scholarly journals Mechanism of Aqueous Carbon Dioxide Reduction by the Solvated Electron

Author(s):  
Vladimir Rybkin

Aqueous solvated electron, e<sub>aq</sub>, a key species in radiation and plasma chemistry, can effciently reduce CO<sub>2</sub> in a potential green chemistry application. Here, the mechanism of this reaction is unravelled by condensed-phase Born-Oppenheimer molecular dynamics based on the correlated wave function and accurate DFT approximation. We introduce and apply the holistic protocol for solvated electron's reactions encompassing all relevant reaction stages starting from diffusion. The carbon dioxide reduction proceeds via a cavity intermediate, which is separated from the product, CO2<sup>-</sup>, by an energy barrier due to the bending of CO<sub>2</sub> and the corresponding solvent reorganization energy. The formation of the intermediate is caused by solvated electron's diffusion, whereas the intermediate transformation to CO<sub>2</sub><sup>-</sup> is triggered by solvent fluctuations. This picture of activation-controlled e<sub>aq</sub> reaction is very different from both rapid barrierless electron transfer, and proton-coupled electron transfer, where key transformations are caused by proton migration.

2020 ◽  
Author(s):  
Vladimir Rybkin

Aqueous solvated electron, e<sub>aq</sub>, a key species in radiation and plasma chemistry, can effciently reduce CO<sub>2</sub> in a potential green chemistry application. Here, the mechanism of this reaction is unravelled by condensed-phase Born-Oppenheimer molecular dynamics based on the correlated wave function and accurate DFT approximation. We introduce and apply the holistic protocol for solvated electron's reactions encompassing all relevant reaction stages starting from diffusion. The carbon dioxide reduction proceeds via a cavity intermediate, which is separated from the product, CO2<sup>-</sup>, by an energy barrier due to the bending of CO<sub>2</sub> and the corresponding solvent reorganization energy. The formation of the intermediate is caused by solvated electron's diffusion, whereas the intermediate transformation to CO<sub>2</sub><sup>-</sup> is triggered by solvent fluctuations. This picture of activation-controlled e<sub>aq</sub> reaction is very different from both rapid barrierless electron transfer, and proton-coupled electron transfer, where key transformations are caused by proton migration.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 636 ◽  
Author(s):  
Giane B. Damas ◽  
Caetano R. Miranda ◽  
Ricardo Sgarbi ◽  
James M. Portela ◽  
Mariana R. Camilo ◽  
...  

The electrochemical reduction of carbon dioxide into carbon monoxide, hydrocarbons and formic acid has offered an interesting alternative for a sustainable energy scenario. In this context, Sn-based electrodes have attracted a great deal of attention because they present low price and toxicity, as well as high faradaic efficiency (FE) for formic acid (or formate) production at relatively low overpotentials. In this work, we investigate the role of tin oxide surfaces on Sn-based electrodes for carbon dioxide reduction into formate by means of experimental and theoretical methods. Cyclic voltammetry measurements of Sn-based electrodes, with different initial degree of oxidation, result in similar onset potentials for the CO2 reduction to formate, ca. −0.8 to −0.9 V vs. reversible hydrogen electrode (RHE), with faradaic efficiencies of about 90–92% at −1.25 V (vs. RHE). These results indicate that under in-situ conditions, the electrode surfaces might converge to very similar structures, with partially reduced or metastable Sn oxides, which serve as active sites for the CO2 reduction. The high faradaic efficiencies of the Sn electrodes brought by the etching/air exposition procedure is ascribed to the formation of a Sn oxide layer with optimized thickness, which is persistent under in situ conditions. Such oxide layer enables the CO2 “activation”, also favoring the electron transfer during the CO2 reduction reaction due to its better electric conductivity. In order to elucidate the reaction mechanism, we have performed density functional theory calculations on different slab models starting from the bulk SnO and Sn6O4(OH)4 compounds with focus on the formation of -OH groups at the water-oxide interface. We have found that the insertion of CO2 into the Sn-OH bond is thermodynamically favorable, leading to the stabilization of the tin-carbonate species, which is subsequently reduced to produce formic acid through a proton-coupled electron transfer process. The calculated potential for CO2 reduction (E = −1.09 V vs. RHE) displays good agreement with the experimental findings and, therefore, support the CO2 insertion onto Sn-oxide as a plausible mechanism for the CO2 reduction in the potential domain where metastable oxides are still present on the Sn surface. These results not only rationalize a number of literature divergent reports but also provide a guideline for the design of efficient CO2 reduction electrocatalysts.


2013 ◽  
Vol 91 (2) ◽  
pp. 155-168
Author(s):  
Waled Tantawy ◽  
Ahmed Hashem ◽  
Nabil Yousif ◽  
Eman Flefel

The thermochemistry of the hydrogen atom transfer reactions from the H2O–BX2 radical system (X = H, CH3, NH2, OH, F) to carbon dioxide, formic acid, and (or) formaldehyde, which produce hydroxyformyl, dihydroxymethyl, and hydroxymethyl radicals, respectively, were investigated theoretically at ROMP2/6–311+G(3DF,2P)//UB3LYP/6–31G(D) and UG3(MP2)-RAD levels of theory. Surprisingly, in the cases of a strong Lewis acid (X = H, CH3, F), the spin transfer process from the water–boryl radical to the carbonyl compounds was barrier-free and associated with a dramatic reduction in the B–H bond dissociation energy (BDE) relative to that of isolated water–borane complexes. Examining the coordinates of these reactions revealed that the entire hydrogen atom transfer process is governed by the proton-coupled electron transfer (PCET) mechanism. Hence, the elucidated mechanism has been applied in the cases of weak Lewis acids (X = NH2, OH), and the variation in the accompanied activation energy was attributed to the stereoelectronic effect interplaying in CO2 and HCOOH compared with HCHO. We ascribed the overall mechanism as a SA-induced five-center cyclic PCET, in which the proton transfers across the so-called complexation-induced hydrogen bond (CIHB) channel, while the SOMOB–LUMOC=O′ interaction is responsible for the electron migration process. Owing to previous reports that interrelate the hydrogen-bonding and the rate of proton-coupled electron-transfer reactions, we postulated that “the rate of the PCET reaction is expected to be promoted by the covalency of the hydrogen bond, and any factor that enhances this covalency could be considered an activator of the PCET process.” This postulate could be considered a good rationale for the lack of a barrier associated with the hydrogen atom transfer from the water-boryl radical system to the carbonyl compounds. Light has been shed on the water–boryl radical reagent from the thermodynamic perspective.


The Copley Medal is awarded to Dr R. Hill, F. R. S., in recognition of his pioneering contributions to the understanding of the nature and mechanism of the main pathway of electron transport in photosynthesis. Almost fifty years ago Hill made the first important discovery that allowed detailed chemical analysis of the pathways of photosynthesis, when he demon­strated the light-driven oxidation of water by isolated chloroplasts, and this made it possible to study water oxidation separately from carbon-dioxide reduction. This was the starting point in the elucidation of the electron-transfer pathway in photosynthesis, and in 1951 Hill, with R. Scarisbrick, uncovered the first com­ponent in the chain when they discovered cytochrome and established its key properties. Subsequently, with H. E. Davenport, Hill discovered the second com­ponent of the chain, shown later by others to be ferredoxin. With F. Bendall he formulated the ‘Z-scheme’ to describe the mechanism of electron transfer in photosynthesis in chloroplasts, which showed the relation between the photochemically driven elements and conventional electron-transfer chains found in other biological systems. This proposal brought great clarity to the field and set the scene for further detailed elucidation of the mechanisms.


2020 ◽  
Vol 11 (11) ◽  
pp. 3007-3015 ◽  
Author(s):  
Jing Du ◽  
Zhong-Ling Lang ◽  
Yuan-Yuan Ma ◽  
Hua-Qiao Tan ◽  
Bai-Ling Liu ◽  
...  

Polyoxometalates as electron regulators to promote the carbonyl manganese (MnL) electrocatalyst for highly efficient CO2 reduction in aqueous electrolyte.


2021 ◽  
Author(s):  
Dawn Holmes ◽  
Jinjie Zhou ◽  
Toshiyuki Ueki ◽  
Trevor Woodard ◽  
Derek Lovley

Direct interspecies electron transfer (DIET) between bacteria and methanogenic archaea appears to be an important syntrophy in both natural and engineered methanogenic environments. However, the electrical connections on the outer surface of methanogens and the subsequent processing of electrons for carbon dioxide reduction to methane are poorly understood. Here we report that the genetically tractable methanogen Methanosarcina acetivorans can grow via DIET in co-culture with Geobacter metallireducens serving as the electron-donating partner. Comparison of gene expression patterns in M. acetivorans grown in co-culture versus pure culture growth on acetate revealed that transcripts for the outer-surface, multi-heme, c-type cytochrome MmcA were higher during DIET-based growth. Deletion of mmcA inhibited DIET. The high aromatic amino acid content of M. acetivorans archaellins suggests that they might assemble into electrically conductive archaella. A mutant that could not express archaella was deficient in DIET. However, this mutant grew in DIET-based co-culture as well as the archaella-expressing parental strain in the presence of granular activated carbon, which was previously shown to serve as a substitute for electrically conductive pili as a conduit for long-range interspecies electron transfer in other DIET-based co-cultures. Transcriptomic data suggesting that the membrane-bound Rnf, Fpo, and HdrED complexes also play a role in DIET were incorporated into a charge-balanced model illustrating how electrons entering the cell through MmcA can yield energy to support growth from carbon dioxide reduction. The results are the first genetics-based functional demonstration of likely outer-surface electrical contacts for DIET in a methanogen.


2009 ◽  
Vol 113 (27) ◽  
pp. 11667-11673 ◽  
Author(s):  
Kuniomi Kiyosawa ◽  
Naoki Shiraishi ◽  
Tetsuya Shimada ◽  
Dai Masui ◽  
Hiroshi Tachibana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document