scholarly journals Mechanism to Enhance Visible-light-driven Photocatalysis of Flower-like Composite of AgI Nanoparticle/BiOI Nanosheet

Author(s):  
Jaafar Hasan ◽  
Gaowei Ouyang ◽  
Jing Wang ◽  
Haidi Li ◽  
Guangdong Tian ◽  
...  

Nanosheet BiOI materials were prepared by using the precipitation-hydrothermal method. Moreover, nanoparticle AgI/BiOI nanosheet composites were prepared using an ion-exchange method and by controlling the amount of BiOI. The phase composition, optical morphology, and absorption properties of the samples were determined using XRD, SEM, XPS, TEM, HRTEM, and UV-Vis diffuse reflectance. Organic dyes, such as methyl orange (MO) and Coomassie brilliant blue R-250 (CBB), were used to check the photocatalytic performance of the composites when undergoing photodegradation in visible light. The prepared composites had high purity, and the AgI nanoparticles were evenly loaded on the flower-like BiOI nanosheets, and both can absorb the visible light. The photocatalytic activity of sole BiOI or AgI was poor, whereas that of the composites was much better. The composite with 50% AgI exhibited the best photocatalytic activity because of the formation of a p-n heterojunction, which promotes the separation of photogenerated carriers and makes AgI stable under visible-light irradiation.

2020 ◽  
Author(s):  
Jaafar Hasan ◽  
Gaowei Ouyang ◽  
Jing Wang ◽  
Haidi Li ◽  
Guangdong Tian ◽  
...  

Nanosheet BiOI materials were prepared by using the precipitation-hydrothermal method. Moreover, nanoparticle AgI/BiOI nanosheet composites were prepared using an ion-exchange method and by controlling the amount of BiOI. The phase composition, optical morphology, and absorption properties of the samples were determined using XRD, SEM, XPS, TEM, HRTEM, and UV-Vis diffuse reflectance. Organic dyes, such as methyl orange (MO) and Coomassie brilliant blue R-250 (CBB), were used to check the photocatalytic performance of the composites when undergoing photodegradation in visible light. The prepared composites had high purity, and the AgI nanoparticles were evenly loaded on the flower-like BiOI nanosheets, and both can absorb the visible light. The photocatalytic activity of sole BiOI or AgI was poor, whereas that of the composites was much better. The composite with 50% AgI exhibited the best photocatalytic activity because of the formation of a p-n heterojunction, which promotes the separation of photogenerated carriers and makes AgI stable under visible-light irradiation.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 437 ◽  
Author(s):  
Zhiming Sun ◽  
Fang Yuan ◽  
Xue Li ◽  
Chunquan Li ◽  
Jie Xu ◽  
...  

A novel kind of cyanuric-acid-modified graphitic carbon nitride (g-C3N4)/kaolinite (m-CN/KA) composite with enhanced visible light-driven photocatalytic performance was fabricated through a facile two-step process. Rhodamine B (RhB) was taken as the target pollutant to study the photocatalytic performance of the synthesized catalysts. It is indicated that the cyanuric acid modification significantly enhanced photocatalytic activity under visible light illumination in comparison with the other reference samples. The apparent rate constant of m-CN/KA is almost 1.9 times and 4.0 times those of g-C3N4/kaolinite and bare g-C3N4, respectively. The superior photocatalytic performance of m-CN/KA could be ascribed, not only to the generation of abundant pore structure and reactive sites, but also to the efficient separation of the photogenerated electron-hole pairs. Furthermore, the possible photocatalytic degradation mechanism of m-CN/KA was also presented in this paper. It could be anticipated that this novel and efficient, metal-free, mineral-based photocatalytic composite has great application prospects in organic pollutant degradation.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 579 ◽  
Author(s):  
Xiaojuan Chen ◽  
Ning Li ◽  
Runliang Zhu ◽  
Shuai Li ◽  
Chunmo Yu ◽  
...  

Novel Z-Scheme CuBi2O4/β-Bi2O3 composite photocatalysts with different mass ratios and calcination temperatures were firstly synthesized by the hydrothermal method following a temperature-programmed process. The morphology, crystal structure, and light absorption properties of the as-prepared samples were systematically characterized, and the composites exhibited enhanced photocatalytic activity toward diclofenac sodium (DS) degradation compared with CuBi2O4 and β-Bi2O3 under visible light irradiation. The optimal photocatalytic efficiency of the composite, achieved at the mass ratio of CuBi2O4 and β-Bi2O3 of 1:2.25 and the calcination temperature of 600 °C is 92.17%. After the seventh recycling of the composite, the degradation of DS can still reach 82.95%. The enhanced photocatalytic activity of CuBi2O4/β-Bi2O3 is closely related to OH•, h+ and O2•−, and the photocatalytic mechanism of CuBi2O4/β-Bi2O3 can be explained by the Z-Scheme theory.


2019 ◽  
Vol 43 (48) ◽  
pp. 19172-19179
Author(s):  
Hong-ji Ren ◽  
Yu-bin Tang ◽  
Wei-long Shi ◽  
Fang-yan Chen ◽  
Yu-song Xu

The red mud/graphene oxide composite photocatalysts with enhanced photocatalytic activity were prepared through a simple ultrasonic mixing method.


2018 ◽  
Vol 238 ◽  
pp. 03007
Author(s):  
Xiquan Wang ◽  
Nan Zhang ◽  
Gao Wang

Bi2S3-sensitized BiFO3 (BFO) photocatalyst (Bi2S3/BFO) was successfully synthesized through a facile and environmental ion exchange method between BFO and Thiosurea (H2NCSNH2, TU). The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV-vis diffuse reflection spectroscopy (DRS). The obtained Bi2S3/BFO composites showed excellent photocatalytic performance for decomposing Rhodamine B (RhB) compared with pure BFO under visible light irradiation (λ>400nm). 5% Bi2S3/BFO exhibited the highest photocatalytic activity and excessive amount of Bi2S3 would result in the decrease of photocatalytic activity of BFO. The mechanism of enhanced photocatalytic activity was proposed on the basis of the calculated energy band positions.


2016 ◽  
Vol 45 (41) ◽  
pp. 16290-16297 ◽  
Author(s):  
Xiaodan Cui ◽  
Wangwang Xu ◽  
Zhiqiang Xie ◽  
James A. Dorman ◽  
Maria Teresa Gutierrez-Wing ◽  
...  

An optimal amount of Ag doping can effectively increase the photocatalytic performance of SnS2.


2012 ◽  
Vol 550-553 ◽  
pp. 196-199
Author(s):  
Ze Wan ◽  
Fa Mei Feng ◽  
Jian Zhang Li ◽  
Jin Jin He ◽  
Jun Bo Zhong ◽  
...  

This paper reveals that photocatalytic activity of Bi2O3 under visible light towards the decolorization of Methyl Orange solution can be greatly enhanced by doping Pr into the lattice of Bi2O3 using a sol-gel method. The photocatalysts were characterized by BET, UV-Vis diffuse reflectance spectroscopy and surface photovoltage spectroscopy (SPS), respectively. The result shows that 4%Pr doped Bi2O3 possesses the best photocatalytic activity under visible light.


2014 ◽  
Vol 2 (15) ◽  
pp. 5315-5322 ◽  
Author(s):  
Lan Ching Sim ◽  
Kah Hon Leong ◽  
Shaliza Ibrahim ◽  
Pichiah Saravanan

GO–Ag–TNTs, a ternary composite was synthesized. Both Ag and GO well contributed to enhance the photocatalytic activity in the visible region.


2021 ◽  
Author(s):  
Rui Zhang ◽  
ziyin chen ◽  
Chen Zhao ◽  
Kunlin Zeng ◽  
Lu Cai ◽  
...  

Abstract A novel binary BiSI/Ag2CO3 photocatalyst with excellent visible light-driven photocatalytic performance was prepared. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and electrochemical impedance spectroscopy (EIS). The photocatalytic activity of the samples were evaluated by photocatalytic degradation of rhodamine B(RhB) under the irradiation of visible light. The results showed that the BiSI improves the photocatalytic activity of BiSI/Ag2CO3. Moreover, when the mass ratio of BiSI in BiSI/Ag2CO3 composites was 40%, the as-prepared BiSI/Ag2CO3 composite exhibited the best photocatalytic activity for degrading RhB. Finally, the possible mechanism for photodegradation over the BiSI/Ag2CO3 composites is also proposed.


Sign in / Sign up

Export Citation Format

Share Document