Infrared Hide-and-Seek: Vibrational Excitons Conceal Surfactants at the Air/Water Interface

Author(s):  
Kimberly A. Carter-Fenk ◽  
Kevin Carter-Fenk ◽  
Michelle E Fiamingo ◽  
Heather Allen ◽  
John M. Herbert

<p>Surface-sensitive vibrational spectroscopy is a common tool for measuring molecular organization and intermolecular interactions at interfaces. Peak intensity ratios are typically used to extract molecular information from one-dimensional spectra but vibrational coupling between surfactant molecules can manifest as signal depletion in one-dimensional spectra. Through a combination of experiment and theory, we demonstrate the emergence of vibrational excitons in infrared reflection-absorption spectra of soluble and insoluble surfactants at the air/water interface. Vibrational coupling yields a signicant decrease in peak intensities corresponding to C-F vibrational modes of perfluorooctanoic acid molecules. Vibrational excitons also form between arachidic acid surfactants within a compressed monolayer, manifesting as signal reduction of C-H stretching modes. The aqueous phase ionic composition impacts surfactant intermolecular distances, thereby modulating vibrational coupling strength between surfactants. Our results serve as a cautionary tale against employing alkyl and fluoroalkyl vibrational peak intensities in analyses that are ubiquitous in interface science.</p>

2020 ◽  
Author(s):  
Kimberly A. Carter-Fenk ◽  
Kevin Carter-Fenk ◽  
Michelle E Fiamingo ◽  
Heather Allen ◽  
John M. Herbert

<p>Surface-sensitive vibrational spectroscopy is a common tool for measuring molecular organization and intermolecular interactions at interfaces. Peak intensity ratios are typically used to extract molecular information from one-dimensional spectra but vibrational coupling between surfactant molecules can manifest as signal depletion in one-dimensional spectra. Through a combination of experiment and theory, we demonstrate the emergence of vibrational excitons in infrared reflection-absorption spectra of soluble and insoluble surfactants at the air/water interface. Vibrational coupling yields a signicant decrease in peak intensities corresponding to C-F vibrational modes of perfluorooctanoic acid molecules. Vibrational excitons also form between arachidic acid surfactants within a compressed monolayer, manifesting as signal reduction of C-H stretching modes. The aqueous phase ionic composition impacts surfactant intermolecular distances, thereby modulating vibrational coupling strength between surfactants. Our results serve as a cautionary tale against employing alkyl and fluoroalkyl vibrational peak intensities in analyses that are ubiquitous in interface science.</p>


2021 ◽  
Author(s):  
Kimberly A. Carter-Fenk ◽  
Kevin Carter-Fenk ◽  
Michelle E Fiamingo ◽  
Heather Allen ◽  
John M. Herbert

<p>Surface-sensitive vibrational spectroscopy is a common tool for measuring molecular organization and intermolecular interactions at interfaces. Peak intensity ratios are typically used to extract molecular information from one-dimensional spectra but vibrational coupling between surfactant molecules can manifest as signal depletion in one-dimensional spectra. Through a combination of experiment and theory, we demonstrate the emergence of vibrational excitons in infrared reflection-absorption spectra of soluble and insoluble surfactants at the air/water interface. Vibrational coupling yields a signicant decrease in peak intensities corresponding to C-F vibrational modes of perfluorooctanoic acid molecules. Vibrational excitons also form between arachidic acid surfactants within a compressed monolayer, manifesting as signal reduction of C-H stretching modes. The aqueous phase ionic composition impacts surfactant intermolecular distances, thereby modulating vibrational coupling strength between surfactants. Our results serve as a cautionary tale against employing alkyl and fluoroalkyl vibrational peak intensities in analyses that are ubiquitous in interface science.</p>


2014 ◽  
Vol 21 (02) ◽  
pp. 1450030
Author(s):  
INDRA GHOSH ◽  
AJITESH PAL ◽  
JAYASREE NATH ◽  
BIJAY KUMAR MISHRA ◽  
RANENDU KUMAR NATH

Anti-malarial methylene blue (MB) doped in arachidic acid (AA) have been incorporated in the Langmuir monolayer at the air–water interface and also in the Langmuir–Blodgett films deposited on quartz substrate. The pressure–area (π–A) isotherm studies at different concentrations of MB pointed out that pure MB could not form stable monolayer at the air–water interface and collapse readily at very low surface pressures. However, mixture of MB with AA formed stable monolayers and they could be transferred into solid quartz substrate to form mono/multi layered films of MB. The area per molecule of floating mixed monolayers was systematically decreased with the increasing concentrations of MB in the mixture. The pressure–time (π - t) isotherm study indicated the interaction kinetics between MB and AA. Higher the concentration of MB, higher is the increase in pressure. The spectroscopic characteristics of the mixed LB films have been compared with that of pure MB solution, microcrystal and layer-by-layer self assembled film with UV-Vis absorption spectroscopy. Surface morphology of the mixed LB and LbL film of MB was measured with atomic force microscopy (AFM).


Langmuir ◽  
2010 ◽  
Vol 26 (18) ◽  
pp. 14472-14478 ◽  
Author(s):  
Matthew P. Shortell ◽  
Hong-Wei Liu ◽  
Huaiyong Zhu ◽  
Esa A. Jaatinen ◽  
Eric R. Waclawik

1988 ◽  
Vol 42 (4) ◽  
pp. 605-608 ◽  
Author(s):  
W. M. Reichert ◽  
C. J. Bruckner ◽  
Sui-Ren Wan

Fluorescence was collected from cyanine-dye-impregnated arachidic acid monolayers at the air/water interface with the use of a fiber optics configuration and a Langmuir film balance. Fatty-acid-to-dye molar ratios in the monolayers ranged from 99:1 to 1:1. The monolayers were compressed in a step-wise manner, with sampling of cyanine fluorescence after each compression step. A drop in fluorescence intensity ranging from 20 to 80% was observed between the uncompressed and compressed monolayers. The observed fluorescence decrease appeared to be a function of barrier pressure rather than molecular area and dye concentration.


1993 ◽  
Vol 47 (7) ◽  
pp. 869-874 ◽  
Author(s):  
D. Blaudez ◽  
T. Buffeteau ◽  
J. C. Cornut ◽  
B. Desbat ◽  
N. Escafre ◽  
...  

This study devoted to the FT-IR spectroscopy of monolayers spread at the air/water interface is, to our knowledge, the first report presenting complete mid-infrared monolayer spectra perfectly extracted from the strong water vapor bands. This has been possible with the use of the polarization-modulated IRRAS method, which is not sensitive to the isotropic absorptions of the sample environment. On the basis of theoretical modeling and experiments, the best angle of incidence has been found near 76° for detection of intraplane as well as out-of-plane oriented monolayer absorptions. With the use of such experimental conditions, on the normalized difference (covered vs. uncovered water) PM-IRRAS spectra, monolayer vibrational bands come out upward or downward, depending on the orientation of their transition moment with respect to the interface. Application to the study of deuterated arachidic acid and arachidate monolayers allows observation of the vibrational modes of the polar head groups interacting with the liquid water molecules and provides some evidence of their symmetrical anchoring. The vibrational modes of the liquid water subphase contribute to these difference spectra as broad dips that certainly contain information on a possible restructuring of the water molecules at the interface.


Sign in / Sign up

Export Citation Format

Share Document