interaction kinetics
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 38)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 869
Author(s):  
Negin Gooran ◽  
Bo Kyeong Yoon ◽  
Joshua A. Jackman

Triton X-100 (TX-100) is a widely used detergent to prevent viral contamination of manufactured biologicals and biopharmaceuticals, and acts by disrupting membrane-enveloped virus particles. However, environmental concerns about ecotoxic byproducts are leading to TX-100 phase out and there is an outstanding need to identify functionally equivalent detergents that can potentially replace TX-100. To date, a few detergent candidates have been identified based on viral inactivation studies, while direct mechanistic comparison of TX-100 and potential replacements from a biophysical interaction perspective is warranted. Herein, we employed a supported lipid bilayer (SLB) platform to comparatively evaluate the membrane-disruptive properties of TX-100 and a potential replacement, Simulsol SL 11W (SL-11W), and identified key mechanistic differences in terms of how the two detergents interact with phospholipid membranes. Quartz crystal microbalance-dissipation (QCM-D) measurements revealed that TX-100 was more potent and induced rapid, irreversible, and complete membrane solubilization, whereas SL-11W caused more gradual, reversible membrane budding and did not induce extensive membrane solubilization. The results further demonstrated that TX-100 and SL-11W both exhibit concentration-dependent interaction behaviors and were only active at or above their respective critical micelle concentration (CMC) values. Collectively, our findings demonstrate that TX-100 and SL-11W have distinct membrane-disruptive effects in terms of potency, mechanism of action, and interaction kinetics, and the SLB platform approach can support the development of biophysical assays to efficiently test potential TX-100 replacements.


Author(s):  
V. A. Kutvitskii ◽  
I. A. Romanova ◽  
O. I. Ostanina ◽  
F. N. Karachevtsev

2021 ◽  
Vol 233 ◽  
pp. 111557
Author(s):  
Sabrina Gossler ◽  
Lena Ruwe ◽  
Wenhao Yuan ◽  
Jiuzhong Yang ◽  
Xiamin Chen ◽  
...  

2021 ◽  
Author(s):  
Mattia Negroni ◽  
Dennis Kurzbach

Abstract We propose a method for real-time nuclear magnetic resonance (NMR) spectroscopy of hyperpolarized proteins at residue resolution. The approach is based on dissolution dynamic nuclear polarization (d-DNP), which enables the use of hyperpolarized buffers that selectively boost NMR signals of backbone amides that incur magnetization fast from their surroundings. Capitalizing on the resulting spectral sparseness and simultaneous signal enhancement, we obtained residue-resolved NMR spectra at a sampling rate of 2 Hz. We could thus track the evolution of hyperpolarization at different protein residues simultaneously with time. This was achieved under near-physiological conditions, i.e., in aqueous solution at physiological salt concentration and at 37° C. With this development, two often encountered limitations of conventional solution-state NMR can be addressed: 1) NMR experiments are typically performed under conditions that increase sensitivity but are physiologically not relevant (low pH, low temperature) and; 2) signal accumulation over long periods impedes the determination of fast (on the order of seconds) real-time monitoring. Both limitations are of equal fundamental relevance: interaction studies under non-native conditions are of limited pharmacological relevance, and the key to the function of proteins often resides in their interaction kinetics. The proposed technique possibly opens new routes towards residue and temporally resolved spectroscopy at the atomistic level by overcoming the need for signal averaging in residue-resolved protein biomolecular NMR.


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 164
Author(s):  
Haoyu Liu ◽  
Wei Liu ◽  
Gang Jin

Exosomes are a kind of membrane-bound phospholipid nanovesicle that are secreted extensively in a variety of biological fluids. Accumulating evidence has indicated that exosomes not only communicate with cells, but also perform functional roles in physiology and pathology. In addition, exosomes have also elicited a great deal of excitement due to their potential as disease biomarkers. Therefore, requirements for sensitive methods capable of precisely and specifically determining exosomes were needed. Herein, we not only develop a sensing surface to capture exosomes but also compare two surface proteins on exosomes, which are appropriate for detecting exosome surface markers by total internal reflected imaging ellipsometry (TIRIE). Protein G and antibody were immobilized on a thin layer of golden substrate to form the biosensing surface. The bio-interaction between antibodies and exosomes was recorded by the TIRIE in real time. The distance between exosomes adhered on a surface was 44 nm ± 0.5 nm. The KD  of anti-CD9 and exosome was lower than anti-CD63 and exosome by introducing pseudo-first-order interaction kinetics, which suggested that CD9 is more suitable for exosome surface markers than CD63. The limit of detection (LOD) of TIRIE was 0.4 μg/mL. In conclusion, we have proposed a surface for the detection of exosomes based on TIRIE, which can make the detection of exosomes convenient and efficient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dong Liang ◽  
Jing Ma ◽  
Bo Wei

AbstractTo investigate the effect of simulated weightlessness on the pharmacokinetics of orally administered moxifloxacin and the antacid Maalox or the antidiarrheal Pepto-Bismol using a tail-suspended (TS) rat model of microgravity. Fasted control and TS, jugular-vein-cannulated, male Sprague-Dawley rats received either a single 5 mg/kg intravenous dose or a single 10 mg/kg oral dose of moxifloxacin alone or with a 0.625 mL/kg oral dose of Maalox or a 1.43 mL/kg oral dose of Pepto-Bismol. Plasma concentrations of moxifloxacin were measured by HPLC. Pharmacokinetic data were analyzed using WinNonlin. Simulated weightlessness had no effect on moxifloxacin disposition after intravenous administration but significantly decreased the extent of moxifloxacin oral absorption. The coadministration of moxifloxacin with Maalox to either control or TS rats caused significant reductions in the rate and extent of moxifloxacin absorption. In contrast, the coadministration of moxifloxacin with Pepto-Bismol to TS rats had no significant effect on either the rate or the extent of moxifloxacin absorption. These interactions showed dose staggering when oral administrations of Pepto-Bismol and moxifloxacin were separated by 60 min in control rats but not in TS rats. Dose staggering was more apparent after the coadministration of Maalox and moxifloxacin in TS rats.


2021 ◽  
Vol 6 (4) ◽  
pp. 233-237
Author(s):  
Vira Sabadash ◽  
◽  
Jaroslaw Gumnitsky ◽  
Sofia Omelyanova ◽  
◽  
...  

The kinetics of adsorption of ammonium ions under dynamic conditions has been studied. A mathematical model of the process was built. The mass transfer coefficient was calculated depending on the intensity of the change of location. It was established that ion exchange occurs in external and internal diffusion regions. The rate constants of ion exchange for the region of external and internal diffusion were calculated.


Sign in / Sign up

Export Citation Format

Share Document