scholarly journals Self Assembly of Model Polymers into Biological Random Networks

Author(s):  
Matthew Bailey ◽  
Mark Wilson

<div>The properties of biological networks, such as those found in the ocular lens capsule, are difficult to study without simplified models.</div><div>Model polymers are developed, inspired by "worm-like'' curve models, that are shown to spontaneously self assemble</div><div>to form networks similar to those observed experimentally in biological systems.</div><div>These highly simplified coarse-grained models allow the self assembly process to be studied on near-realistic time-scales.</div><div>Metrics are developed (using a polygon-based framework)</div><div>which are useful for describing simulated networks and can also be applied to images of real networks.</div><div>These metrics are used to show the range of control that the computational polymer model has over the networks, including the polygon structure and short range order.</div><div>The structure of the simulated networks are compared to previous simulation work and microscope images of real networks. </div><div>The network structure is shown to be a function of the interaction strengths, cooling rates and external pressure. </div><div>In addition, "pre-tangled'' network structures are introduced and shown to significantly influence the subsequent network structure.</div><div>The network structures obtained fit into a region of the network landscape effectively inaccessible to random</div><div>(entropically-driven) networks but which are occupied by experimentally-derived configurations.</div>

2020 ◽  
Author(s):  
Matthew Bailey ◽  
Mark Wilson

<div>The properties of biological networks, such as those found in the ocular lens capsule, are difficult to study without simplified models.</div><div>Model polymers are developed, inspired by "worm-like'' curve models, that are shown to spontaneously self assemble</div><div>to form networks similar to those observed experimentally in biological systems.</div><div>These highly simplified coarse-grained models allow the self assembly process to be studied on near-realistic time-scales.</div><div>Metrics are developed (using a polygon-based framework)</div><div>which are useful for describing simulated networks and can also be applied to images of real networks.</div><div>These metrics are used to show the range of control that the computational polymer model has over the networks, including the polygon structure and short range order.</div><div>The structure of the simulated networks are compared to previous simulation work and microscope images of real networks. </div><div>The network structure is shown to be a function of the interaction strengths, cooling rates and external pressure. </div><div>In addition, "pre-tangled'' network structures are introduced and shown to significantly influence the subsequent network structure.</div><div>The network structures obtained fit into a region of the network landscape effectively inaccessible to random</div><div>(entropically-driven) networks but which are occupied by experimentally-derived configurations.</div>


2020 ◽  
Author(s):  
Matthew Bailey ◽  
Mark Wilson

<div>The properties of biological networks, such as those found in the ocular lens capsule, are difficult to study without simplified models.</div><div>Model polymers are developed, inspired by "worm-like'' curve models, that are shown to spontaneously self assemble</div><div>to form networks similar to those observed experimentally in biological systems.</div><div>These highly simplified coarse-grained models allow the self assembly process to be studied on near-realistic time-scales.</div><div>Metrics are developed (using a polygon-based framework)</div><div>which are useful for describing simulated networks and can also be applied to images of real networks.</div><div>These metrics are used to show the range of control that the computational polymer model has over the networks, including the polygon structure and short range order.</div><div>The structure of the simulated networks are compared to previous simulation work and microscope images of real networks. </div><div>The network structure is shown to be a function of the interaction strengths, cooling rates and external pressure. </div><div>In addition, "pre-tangled'' network structures are introduced and shown to significantly influence the subsequent network structure.</div><div>The network structures obtained fit into a region of the network landscape effectively inaccessible to random</div><div>(entropically-driven) networks but which are occupied by experimentally-derived configurations.</div>


2020 ◽  
Vol 26 (6) ◽  
pp. 613-618
Author(s):  
A. V. Altukhov ◽  
S. A. Tishchenko

The presented study reviews practically relevant research papers in the field of network structures, modern network business models and platforms.Aim. The study aims to elaborate and explain the concept of network structure and platform and to show the reasons for the progressiveness and potential of network organizational structure at the current stage of socio-economic and scientific development.Tasks. The authors highlight the main scientific ideas about network structures in business, including significant studies in this area; provide and explain the main terms and definitions and examine the key characteristics of network business structures; characterize “platforms” as an important concept for modern business and show the relationship between platforms and network structures.Methods. This study uses analysis of information and subsequent synthesis of new knowledge in the form of the authors’ conclusions and a wide range of relevant scientific publications of Russian and foreign authors, including original publications in English and French.Results. The history of network structures is briefly provided. Definitions and characteristics of such concepts as “network structure” and “platform” in relation to business are provided and explained by the authors.


2005 ◽  
Vol 33 (5) ◽  
pp. 910-912 ◽  
Author(s):  
P.J. Bond ◽  
J. Cuthbertson ◽  
M.S.P. Sansom

Interactions between membrane proteins and detergents are important in biophysical and structural studies and are also biologically relevant in the context of folding and transport. Despite a paucity of high-resolution data on protein–detergent interactions, novel methods and increased computational power enable simulations to provide a means of understanding such interactions in detail. Simulations have been used to compare the effect of lipid or detergent on the structure and dynamics of membrane proteins. Moreover, some of the longest and most complex simulations to date have been used to observe the spontaneous formation of membrane protein–detergent micelles. Common mechanistic steps in the micelle self-assembly process were identified for both α-helical and β-barrel membrane proteins, and a simple kinetic mechanism was proposed. Recently, simplified (i.e. coarse-grained) models have been utilized to follow long timescale transitions in membrane protein–detergent assemblies.


Soft Matter ◽  
2021 ◽  
Author(s):  
Alexander Kantardjiev

We carried out a series of coarse-grained molecular dynamics liposome-copolymer simulations with varying extent of copolymer concentration in an attempt to understand the effect of copolymer structure and concentration on vesicle self-assembly and stability.


Author(s):  
Łukasz Piotr Baran ◽  
Wojciech Rżysko ◽  
Dariusz Tarasewicz

In this study we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of...


2006 ◽  
Vol 20 (26) ◽  
pp. 1645-1651
Author(s):  
JIAFU CHEN ◽  
YU YE ◽  
QIANWANG CHEN

A novel hexagonal network structure formed by self-assembly of discrete nickel ferrite nanoparticles on a carbon-coated Cu grid is reported. Each hexagon consists of about 22 discrete nanoparticles with sizes from 120 to 250 nm. The side of the regular hexagon contains 4–6 discrete nanoparticles. The sample displays a large coercivity of 622.6 Oe, exhibiting a hard magnetic feature different from those of the corresponding bulk materials, and is closely related to the hexagonal network structure of nickel ferrite nanoparticles.


2008 ◽  
Vol 112 (12) ◽  
pp. 4498-4506 ◽  
Author(s):  
Orly Kletenik-Edelman ◽  
Elina Ploshnik ◽  
Asaf Salant ◽  
Roy Shenhar ◽  
Uri Banin ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document