scholarly journals Modification of TiO2 with Metal Chalcogenide Nanoclusters for Hydrogen Evolution

Author(s):  
Stephen Rhatigan ◽  
Lorenzo Niemitz ◽  
Michael Nolan

Using density functional theory, corrected for on-site Coulomb interactions (DFT+U), we have investigated surface modification of TiO<sub>2</sub> with metal chalcogenide nanoclusters for hydrogen evolution. The nanoclusters have composition M<sub>4</sub>X<sub>4</sub> (M = Sn, Zn; X = S, Se) and are adsorbed at the rutile (110) surface. The nanoclusters adsorb exothermically, with adsorption energies in the range -3.00 eV to -2.70 eV. Computed density of states (DOS) plots show that cluster-derived states extend into the band-gap of the rutile support, which indicates that modification produces a redshift in light absorption. After modification, photoexcited electrons and holes are separated onto surface and cluster sites, respectively. The free energy of H adsorption is used to assess the performance of metal chalcogenide modified TiO<sub>2</sub> as a catalyst for HER. Adsorption of H at nanocluster (S, Se) and surface (O) sites is considered, together with the effect of H coverage. Adsorption free energies at cluster sites in the range (-0.15 eV, 0.15 eV) are considered to be favourable for HER. The results of this analysis indicate that the sulphide modifiers are more active towards HER than the selenide modifiers and exhibit hydrogen adsorption free energies in the active range, for most coverages. Conversely, the adsorption free energies at the selenide nanoclusters are only in the active range at low H coverages. Our results indicate that surface modification with small, dispersed nanoclusters of appropriately selected materials can enhance the photocatalytic activity of TiO<sub>2</sub> for HER applications.

2020 ◽  
Author(s):  
Stephen Rhatigan ◽  
Lorenzo Niemitz ◽  
Michael Nolan

Using density functional theory, corrected for on-site Coulomb interactions (DFT+U), we have investigated surface modification of TiO<sub>2</sub> with metal chalcogenide nanoclusters for hydrogen evolution. The nanoclusters have composition M<sub>4</sub>X<sub>4</sub> (M = Sn, Zn; X = S, Se) and are adsorbed at the rutile (110) surface. The nanoclusters adsorb exothermically, with adsorption energies in the range -3.00 eV to -2.70 eV. Computed density of states (DOS) plots show that cluster-derived states extend into the band-gap of the rutile support, which indicates that modification produces a redshift in light absorption. After modification, photoexcited electrons and holes are separated onto surface and cluster sites, respectively. The free energy of H adsorption is used to assess the performance of metal chalcogenide modified TiO<sub>2</sub> as a catalyst for HER. Adsorption of H at nanocluster (S, Se) and surface (O) sites is considered, together with the effect of H coverage. Adsorption free energies at cluster sites in the range (-0.15 eV, 0.15 eV) are considered to be favourable for HER. The results of this analysis indicate that the sulphide modifiers are more active towards HER than the selenide modifiers and exhibit hydrogen adsorption free energies in the active range, for most coverages. Conversely, the adsorption free energies at the selenide nanoclusters are only in the active range at low H coverages. Our results indicate that surface modification with small, dispersed nanoclusters of appropriately selected materials can enhance the photocatalytic activity of TiO<sub>2</sub> for HER applications.


2021 ◽  
Author(s):  
Charlie Ruffman ◽  
James Thomas Alan Gilmour ◽  
Anna L. Garden

The thermodynamics of hydrogen evolution on MoS2 nanotubes is studied for the first time using periodic density functional theory calculations to obtain hydrogen adsorption free energies (ΔGH ads) on pristine...


Nanoscale ◽  
2020 ◽  
Author(s):  
Charlie Ruffman ◽  
Calum Keith Gordon ◽  
James Thomas Alan Gilmour ◽  
Frank Donald Mackenzie ◽  
Anna L. Garden

The hydrogen adsorption free energy (ΔGHads) on the basal plane and edges of MoS2 is studied using periodic density functional theory, with the catalyst supported by a range of two-dimensional...


2018 ◽  
Vol 786 ◽  
pp. 384-392 ◽  
Author(s):  
Hussein Y. Ammar

The structural and electronic properties of Li, Mg and Al deposited ZnO nanocages and their effects on the adsorption of formaldehyde molecule have been investigated using the density functional theory (DFT) computations. To understand the behavior of the adsorbed CH2O molecule on the ZnO nanocage, results of DFT calculations of the M-deposited nanocages (M=Li, Mg and Al), as well as complex systems consisting of the adsorbed CH2O molecule on M-deposited ZnO nanocage were reported. The results presented include adsorption energies, bond lengths, electronic configurations, density of states and molecular orbitals. It was found that, the most energetically stable adsorption configurations of CH2O molecule on the bare ZnO leads to 12% dilation in C=O bond length of CH2O and 14% decrease in HOMO-LUMO gap of ZnO cluster. The most energetically stable adsorption configurations of CH2O molecule on Li, Mg and Al-deposited ZnO lead to 4%, 4% and 11% dilation in C=O bond length of CH2O and-0.66, -45 and , +66% change in HOMO-LUMO gap of ZnO nanocages, respectively. The interaction between CH2O with bare ZnO and M-deposited ZnO nanocages is attributed to charge transfer mechanism. These results may be meaningful for CH2O degradation and detection.


Author(s):  
Khorsed Alam ◽  
Tisita Das ◽  
Sudip Chakraborty ◽  
Prasenjit Sen

Electronic structure calculations based on density functional theory are used to identify the catalytically active sites for the hydrogen evolution reaction on single layers of the two transition metal tri-chalcogenide...


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 307
Author(s):  
Russell W. Cross ◽  
Nelson Y. Dzade

Nickel phosphide (Ni2P) is a promising material for the electrocatalytic generation of hydrogen from water. Here, we present a chemical picture of the fundamental mechanism of Volmer–Tafel steps in hydrogen evolution reaction (HER) activity under alkaline conditions at the (0001) and (10 1 ¯ 0) surfaces of Ni2P using dispersion-corrected density functional theory calculations. Two terminations of each surface (Ni3P2- and Ni3P-terminated (0001); and Ni2P- and NiP-terminated (10 1 ¯ 0)), which have been shown to coexist in Ni2P samples depending on the experimental conditions, were studied. Water adsorption on the different terminations of the Ni2P (0001) and (10 1 ¯ 0) surfaces is shown to be exothermic (binding energy in the range of 0.33−0.68 eV) and characterized by negligible charge transfer to/from the catalyst surface (0.01−0.04 e−). High activation energy barriers (0.86−1.53 eV) were predicted for the dissociation of water on each termination of the Ni2P (0001) and (10 1 ¯ 0) surfaces, indicating sluggish kinetics for the initial Volmer step in the hydrogen evolution reaction over a Ni2P catalyst. Based on the predicted Gibbs free energy of hydrogen adsorption (ΔGH*) at different surface sites, we found that the presence of Ni3-hollow sites on the (0001) surface and bridge Ni-Ni sites on the (10 1 ¯ 0) surface bind the H atom too strongly. To achieve facile kinetics for both the Volmer and Heyrovsky–Tafel steps, modification of the surface structure and tuning of the electronic properties through transition metal doping is recommended as an important strategy.


Nanoscale ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 3780-3785 ◽  
Author(s):  
Ik Seon Kwon ◽  
In Hye Kwak ◽  
Hafiz Ghulam Abbas ◽  
Hee Won Seo ◽  
Jaemin Seo ◽  
...  

Mn-Porphyrin-MoS2 exhibits excellent electrocatalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.


2019 ◽  
Vol 7 (14) ◽  
pp. 8101-8106 ◽  
Author(s):  
In Hye Kwak ◽  
Hafiz Ghulam Abbas ◽  
Ik Seon Kwon ◽  
Yun Chang Park ◽  
Jaemin Seo ◽  
...  

Cobaltocene-intercalated WS2 nanosheets exhibit excellent catalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document