scholarly journals Synthesis and Thermal Study of Hexacoordinated Aluminum(III) Triazenides for Use in Atomic Layer Deposition

Author(s):  
Rouzbeh Samii ◽  
David Zanders ◽  
Sydney Buttera ◽  
Vadim Kessler ◽  
Lars Ojamäe ◽  
...  

<p>Amidinate and guanidinate ligands have been used extensively to produce volatile and thermally stable precursors for atomic layer deposition. The triazenide ligand is relatively unexplored as an alternative ligand system. Herein, we present six new Al(III) complexes bearing three sets of a 1,3-dialkyltriazenide ligand. These complexes volatilize quantitatively in a single step with onset volatilization temperatures of ~150 °C and 1 Torr vapor pressures of ~134 °C. Differential scanning calorimetry revealed these Al(III) complexes exhibited exothermic events that overlapped with the temperatures of their mass loss events in thermogravimetric analysis. Using quantum chemical density functional theory computations, we found a decomposition pathway transforming the relatively large hexacoordinated Al(III) precursor into a smaller dicoordinated complex. The pathway relies on previously unexplored inter-ligand interactions, in which protons migrate between the triazenide ligands. These new Al(III) triazenides provides a series of alternative precursors with unique thermal properties that could be highly advantageous for vapor deposition processes of Al containing materials.</p>

2020 ◽  
Author(s):  
Rouzbeh Samii ◽  
David Zanders ◽  
Sydney Buttera ◽  
Vadim Kessler ◽  
Lars Ojamäe ◽  
...  

<p>Amidinate and guanidinate ligands have been used extensively to produce volatile and thermally stable precursors for atomic layer deposition. The triazenide ligand is relatively unexplored as an alternative ligand system. Herein, we present six new Al(III) complexes bearing three sets of a 1,3-dialkyltriazenide ligand. These complexes volatilize quantitatively in a single step with onset volatilization temperatures of ~150 °C and 1 Torr vapor pressures of ~134 °C. Differential scanning calorimetry revealed these Al(III) complexes exhibited exothermic events that overlapped with the temperatures of their mass loss events in thermogravimetric analysis. Using quantum chemical density functional theory computations, we found a decomposition pathway transforming the relatively large hexacoordinated Al(III) precursor into a smaller dicoordinated complex. The pathway relies on previously unexplored inter-ligand interactions, in which protons migrate between the triazenide ligands. These new Al(III) triazenides provides a series of alternative precursors with unique thermal properties that could be highly advantageous for vapor deposition processes of Al containing materials.</p>


2021 ◽  
Author(s):  
Rouzbeh Samii ◽  
David Zanders ◽  
Anton Fransson ◽  
Goran Bačić ◽  
Sean Barry ◽  
...  

<p>The number of M–N bonded divalent group 14 precursors suitable for atomic layer deposition is limited, in particular for Ge and Pb. A majority of the reported precursors are dicoordinated, with the only tetracoordinated example being the Sn(II) amidinate. No such Ge(II) and Pb(II) compounds have been demonstrated. Herein, we present tetracoordinated Ge(II), Sn(II) and Pb(II) complexes bearing two sets of the bidentate 1,3-di-<i>tert</i>-butyl triazenide ligands. These compounds are highly volatile and show ideal behavior by thermogravimetric analysis. However, they have unusual thermal properties and exhibit instability during sublimation. Interestingly, the instability is not only temperature dependent but also facilitated by reduced pressure. Using quantum-chemical density functional theory, a gas-phase decomposition pathway was mapped out. The pathway account for the unusual thermal behavior of the compounds and is supported by electron impact mass spectrometry data.</p>


2021 ◽  
Author(s):  
Rouzbeh Samii ◽  
David Zanders ◽  
Anton Fransson ◽  
Goran Bačić ◽  
Sean Barry ◽  
...  

<p>The number of M–N bonded divalent group 14 precursors suitable for atomic layer deposition is limited, in particular for Ge and Pb. A majority of the reported precursors are dicoordinated, with the only tetracoordinated example being the Sn(II) amidinate. No such Ge(II) and Pb(II) compounds have been demonstrated. Herein, we present tetracoordinated Ge(II), Sn(II) and Pb(II) complexes bearing two sets of the bidentate 1,3-di-<i>tert</i>-butyl triazenide ligands. These compounds are highly volatile and show ideal behavior by thermogravimetric analysis. However, they have unusual thermal properties and exhibit instability during sublimation. Interestingly, the instability is not only temperature dependent but also facilitated by reduced pressure. Using quantum-chemical density functional theory, a gas-phase decomposition pathway was mapped out. The pathway account for the unusual thermal behavior of the compounds and is supported by electron impact mass spectrometry data.</p>


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1028
Author(s):  
Laura Keskiväli ◽  
Pirjo Heikkilä ◽  
Eija Kenttä ◽  
Tommi Virtanen ◽  
Hille Rautkoski ◽  
...  

The growth mechanism of Atomic Layer Deposition (ALD) on polymeric surfaces differs from growth on inorganic solid substrates, such as silicon wafer or glass. In this paper, we report the growth experiments of Al2O3 and ZnO on nonwoven poly-L-lactic acid (PLLA), polyethersulphone (PES) and cellulose acetate (CA) fibres. Material growth in both ALD and infiltration mode was studied. The structures were examined with a scanning electron microscope (SEM), scanning transmission electron microscope (STEM), attenuated total reflectance-fourier-transform infrared spectroscopy (ATR-FTIR) and 27Al nuclear magnetic resonance (NMR). Furthermore, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis were used to explore the effect of ALD deposition on the thermal properties of the CA polymer. According to the SEM, STEM and ATR-FTIR analysis, the growth of Al2O3 was more uniform than ZnO on each of the polymers studied. In addition, according to ATR-FTIR spectroscopy, the infiltration resulted in interactions between the polymers and the ALD precursors. Thermal analysis (TGA/DSC) revealed a slower depolymerization process and better thermal resistance upon heating both in ALD-coated and infiltrated fibres, more pronounced on the latter type of structures, as seen from smaller endothermic peaks on TA.


2015 ◽  
Vol 86 (11) ◽  
pp. 113901 ◽  
Author(s):  
Jeffrey A. Klug ◽  
Matthew S. Weimer ◽  
Jonathan D. Emery ◽  
Angel Yanguas-Gil ◽  
Sönke Seifert ◽  
...  

2012 ◽  
Vol 30 (1) ◽  
pp. 01A115 ◽  
Author(s):  
Maarit Kariniemi ◽  
Jaakko Niinistö ◽  
Marko Vehkamäki ◽  
Marianna Kemell ◽  
Mikko Ritala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document