scholarly journals Investigation of Base-free Copper-Catalysed Azide–Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media

Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a widely used and effective chemical transformation, applied to obtain relevant products in medicine, biology and materials science. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as green and “active” reaction media, has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these innovative solvents has shown to improve the reaction effectiveness, giving excellent yields. NADESs proved to be “active” in these transformations for the absence of added bases in all the performed reactions and in several cases, for their reducing capabilities. The reactions outcomes were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering of reagents and the possibility of recycling of the green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis. </p>

2021 ◽  
Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a widely used and effective chemical transformation, applied to obtain relevant products in medicine, biology and materials science. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as green and “active” reaction media, has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these innovative solvents has shown to improve the reaction effectiveness, giving excellent yields. NADESs proved to be “active” in these transformations for the absence of added bases in all the performed reactions and in several cases, for their reducing capabilities. The reactions outcomes were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering of reagents and the possibility of recycling of the green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis. </p>


2021 ◽  
Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a widely used and effective chemical transformation, applied to obtain relevant products in medicine, biology and materials science. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as green and “active” reaction media, has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these innovative solvents has shown to improve the reaction effectiveness, giving excellent yields. NADESs proved to be “active” in these transformations for the absence of added bases in all the performed reactions and in several cases, for their reducing capabilities. The reactions outcomes were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering of reagents and the possibility of recycling of the green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis. </p>


2021 ◽  
Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a widely used and effective chemical transformation, applied to obtain relevant products in medicine, biology and materials science. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as green and “active” reaction media, has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these innovative solvents has shown to improve the reaction effectiveness, giving excellent yields. NADESs proved to be “active” in these transformations for the absence of added bases in all the performed reactions and in several cases, for their reducing capabilities. The reactions outcomes were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering of reagents and the possibility of recycling of the green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis. </p>


2020 ◽  
Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<div><div><div><p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a transformation widely used to obtain relevant products in chemical biology, medicinal chemistry, materials science and other fields. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as “active” reaction media has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these green liquids as green and catalytic solvents has shown to improve the reaction effectiveness, giving excellent yields. The NADESs proved to be “active” in this transformation for the absence of added bases in all the performed reactions and in several cases for their reducing capabilities. The results were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering</p></div></div></div><div><div><div><p>of reagents and the possibility of recycling of these green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis.</p></div></div></div>


2020 ◽  
Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<div><div><div><p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a transformation widely used to obtain relevant products in chemical biology, medicinal chemistry, materials science and other fields. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as “active” reaction media has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these green liquids as green and catalytic solvents has shown to improve the reaction effectiveness, giving excellent yields. The NADESs proved to be “active” in this transformation for the absence of added bases in all the performed reactions and in several cases for their reducing capabilities. The results were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering</p></div></div></div><div><div><div><p>of reagents and the possibility of recycling of these green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis.</p></div></div></div>


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2015 ◽  
Author(s):  
Noel Nebra ◽  
Joaquín García-Álvarez

This mini-review presents a general overview of the progress achieved during the last decade on the amalgamation of CuAAC processes (copper-catalyzed azide-alkyne cycloaddition) with the employment of sustainable solvents as reaction media. In most of the presented examples, the use of water, glycerol (Gly), or deep eutectic solvents (DESs) as non-conventional reaction media allowed not only to recycle the catalytic system (thus reducing the amount of the copper catalyst needed per mole of substrate), but also to achieve higher conversions and selectivities when compared with the reaction promoted in hazardous and volatile organic solvents (VOCs). Moreover, the use of the aforementioned green solvents also permits the improvement of the overall sustainability of the Cu-catalyzed 1,3-dipolar cycloaddition process, thus fulfilling several important principles of green chemistry.


RSC Advances ◽  
2018 ◽  
Vol 8 (27) ◽  
pp. 15069-15077 ◽  
Author(s):  
Y. C. Wu ◽  
P. Wu ◽  
Y. B. Li ◽  
T. C. Liu ◽  
L. Zhang ◽  
...  

Natural deep eutectic solvents ultrasound-assisted extraction (NADES-UAE) was applied to extract total anthraquinones from Rheum palmatum L.


2018 ◽  
Vol 7 (4) ◽  
pp. 353-359 ◽  
Author(s):  
Jing Wang ◽  
Sheila N. Baker

Abstract Ionic liquids (ILs) are considered to be green solvents for various applications. However, their synthesis via chemical reaction with by-products or waste produced is contradictory to the concept of green chemistry, and the purity problem and economic feasibility limit their applications in some large-scale industrial applications. 1-Butyl-1-methylpyrrolidinium bromide ([bmpy][Br]), which is a molten salt with melting point above 100°C is a precursor of pyrrolidinium ILs, but hardly can be put under the category of IL because of its high melting point. In this study, [bmpy][Br] based binary deep eutectic solvent (BDES) and ternary deep eutectic solvent (TDES) were synthesized to prepare [bmpy][Br] in liquid form. During the preparation process, no reaction media was employed, no by-product was generated, and no further purification was required, thereby making it a completely green process. The prepared TDES has better thermal stability and larger free volume than BDES, which is potentially useful for sorption applications with high temperature requirement. It is also because of the green preparation process that the TDES is also expected to be capable for the large-scale industrial applications. This work is opening up new avenues for the study of binary and ternary IL-DES system and their applications.


Sign in / Sign up

Export Citation Format

Share Document