scholarly journals Interrogation of O-ATRP Activation Conducted by Singlet and Triplet Excited States of Phenoxazine Photocatalysts

Author(s):  
Yisrael M. Lattke ◽  
Daniel Corbin ◽  
Steven M. Sartor ◽  
Blaine G. McCarthy ◽  
Garret Miyake ◽  
...  

Organocatalyzed ATRP (O-ATRP) is a growing field exploiting organic chromophores as photoredox catalysts (PCs) that engage in dissociative electron transfer (DET) activation of alkyl halide initiators following absorption of light. Characterizing DET rate coefficients (<i>k<sub>act</sub></i>) and photochemical yields across various reaction conditions and PC photophysical properties will inform catalyst design and efficient use during polymerization. The studies described herein consider a class of phenoxazine PCs where synthetic handles of core-substitution and <i>N</i>-aryl substitution enable tunability of the electronic and spin character of the catalyst excited state as well as DET reaction driving force ( ). Using Stern-Volmer quenching experiments through variation of diethyl 2-bromo-2-methylmalonate (DBMM) initiator concentration, collisional quenching is observed. Eight independent measurements of <i>k<sub>act </sub></i>are reported as a function of for four PCs: four triplet reactants and four singlets with <i>k<sub>act</sub></i> values ranging from 1.1´10<sup>8</sup> M<sup>-1</sup>s<sup>-1</sup> where DET itself controls the rate to 4.8´10<sup>9</sup> M<sup>-1</sup>s<sup>-1</sup> where diffusion is rate limiting. This overall data set, as well as a second one inclusive of five literature values from related systems, is readily modeled with only a single parameter of reorganization energy under the frameworks of adiabatic Marcus electron transfer theory and Marcus-Savéant theory of DET. The results provide a predictive map where <i>k<sub>act</sub></i> can be estimated if is known and highlight that DET in these systems appears insensitive to PC reactant electronic and spin properties outside of their impact on driving force. Next, on the basis of measured <i>k<sub>act</sub></i> values in selected PC systems and knowledge of their photophysics, we also consider activation yields specific to the reactant spin states as the DBMM initiator concentration is varied. In <i>N</i>-naphthyl-containing PCs characterized by near-unity intersystem crossing, the T<sub>1</sub> is certainly an important driver for efficient DET. However, at DBMM concentrations common to polymer synthesis, the S<sub>1</sub> is also active and drives 33% of DET reaction events. Even in systems with low yields of ISC, such as in <i>N</i>-phenyl-containing PCs, reaction yields can be driven to useful values by exploiting the S<sub>1</sub> under high DBMM concentration conditions. Finally, we have quantified photochemical reaction quantum yields, which take into account potential product loss processes after electron-transfer quenching events. Both S<sub>1</sub> and T<sub>1</sub> reactant states produce the PC<sup>·+</sup> radical cation with a common yield of 71%, thus offering no evidence for spin selectivity in deleterious back electron transfer. The sub-unity PC<sup>·+</sup> yields suggest that some combination of solvent (DMAc) oxidation and energy-wasting back electron transfer is likely at play and these pathways should be factored in subsequent mechanistic considerations.

2021 ◽  
Author(s):  
Yisrael M. Lattke ◽  
Daniel Corbin ◽  
Steven M. Sartor ◽  
Blaine G. McCarthy ◽  
Garret Miyake ◽  
...  

Organocatalyzed ATRP (O-ATRP) is a growing field exploiting organic chromophores as photoredox catalysts (PCs) that engage in dissociative electron transfer (DET) activation of alkyl halide initiators following absorption of light. Characterizing DET rate coefficients (<i>k<sub>act</sub></i>) and photochemical yields across various reaction conditions and PC photophysical properties will inform catalyst design and efficient use during polymerization. The studies described herein consider a class of phenoxazine PCs where synthetic handles of core-substitution and <i>N</i>-aryl substitution enable tunability of the electronic and spin character of the catalyst excited state as well as DET reaction driving force ( ). Using Stern-Volmer quenching experiments through variation of diethyl 2-bromo-2-methylmalonate (DBMM) initiator concentration, collisional quenching is observed. Eight independent measurements of <i>k<sub>act </sub></i>are reported as a function of for four PCs: four triplet reactants and four singlets with <i>k<sub>act</sub></i> values ranging from 1.1´10<sup>8</sup> M<sup>-1</sup>s<sup>-1</sup> where DET itself controls the rate to 4.8´10<sup>9</sup> M<sup>-1</sup>s<sup>-1</sup> where diffusion is rate limiting. This overall data set, as well as a second one inclusive of five literature values from related systems, is readily modeled with only a single parameter of reorganization energy under the frameworks of adiabatic Marcus electron transfer theory and Marcus-Savéant theory of DET. The results provide a predictive map where <i>k<sub>act</sub></i> can be estimated if is known and highlight that DET in these systems appears insensitive to PC reactant electronic and spin properties outside of their impact on driving force. Next, on the basis of measured <i>k<sub>act</sub></i> values in selected PC systems and knowledge of their photophysics, we also consider activation yields specific to the reactant spin states as the DBMM initiator concentration is varied. In <i>N</i>-naphthyl-containing PCs characterized by near-unity intersystem crossing, the T<sub>1</sub> is certainly an important driver for efficient DET. However, at DBMM concentrations common to polymer synthesis, the S<sub>1</sub> is also active and drives 33% of DET reaction events. Even in systems with low yields of ISC, such as in <i>N</i>-phenyl-containing PCs, reaction yields can be driven to useful values by exploiting the S<sub>1</sub> under high DBMM concentration conditions. Finally, we have quantified photochemical reaction quantum yields, which take into account potential product loss processes after electron-transfer quenching events. Both S<sub>1</sub> and T<sub>1</sub> reactant states produce the PC<sup>·+</sup> radical cation with a common yield of 71%, thus offering no evidence for spin selectivity in deleterious back electron transfer. The sub-unity PC<sup>·+</sup> yields suggest that some combination of solvent (DMAc) oxidation and energy-wasting back electron transfer is likely at play and these pathways should be factored in subsequent mechanistic considerations.


1988 ◽  
Vol 66 (2) ◽  
pp. 319-324 ◽  
Author(s):  
R. J. DeVoe ◽  
M. R. V. Sahyun ◽  
Einhard Schmidt ◽  
N. Serpone ◽  
D. K. Sharma

We have studied the anthracene-sensitized photolyses of both diphenyliodonium and triphenylsulphonium salts in solution using both steady-state and laser flash photolysis techniques. Photoproducts, namely, phenylated anthracenes along with iodobenzene or diphenylsulphide, respectively, are obtained from both salts with quantum efficiencies of ca. 0.1 at 375 nm. We infer the intermediacy of diphenyliodo and triphenylsulphur radicals formed by single electron transfer from the singlet-excited anthracene. We have developed a quantitative model of this chemistry, and identify the principal sources of inefficiency as back electron transfer, which occurs at nearly the theoretically limiting rate, intersystem crossing from the initially formed sensitizer–'onium salt encounter complex, and in-cage radical recombination.


2017 ◽  
Vol 19 (22) ◽  
pp. 14412-14423 ◽  
Author(s):  
Ewelina Krzyszkowska ◽  
Justyna Walkowiak-Kulikowska ◽  
Sven Stienen ◽  
Aleksandra Wojcik

Quenching of the thionine singlet excited state in covalently functionalized graphene oxide with an efficient back electron transfer process.


2017 ◽  
Vol 9 (39) ◽  
pp. 33887-33895 ◽  
Author(s):  
Heng Zhu ◽  
Shicheng Yan ◽  
Zhaosheng Li ◽  
Zhigang Zou

2017 ◽  
Vol 53 (49) ◽  
pp. 6629-6632 ◽  
Author(s):  
Vediappan Sudhakar ◽  
Arulraj Arulkashmir ◽  
Kothandam Krishnamoorthy

A polymer–graphene blocking layer decreases back electron transfer and increases dye regeneration that improved the DSSC efficiency to 10.4%.


2017 ◽  
Vol 10 (10) ◽  
pp. 2245-2255 ◽  
Author(s):  
Bryant Chica ◽  
Chang-Hao Wu ◽  
Yuhgene Liu ◽  
Michael W. W. Adams ◽  
Tianquan Lian ◽  
...  

We describe a hybrid photocatalytic system for hydrogen production consisting of nanocrystalline CdSe/CdS dot-in-rod (DIR) structures coupled to [NiFe] soluble hydrogenase I (SHI) fromPyrococcus furiosus.


2000 ◽  
Vol 300-302 ◽  
pp. 186-190 ◽  
Author(s):  
Mauro C.M. Laranjeira ◽  
Rosemary A. Marusak ◽  
A.Graham Lappin

Sign in / Sign up

Export Citation Format

Share Document