scholarly journals Nanostructured Si-C Composites As High-Capacity Anode Material For All-Solid-State Lithium-Ion Batteries

Author(s):  
Stephanie Poetke ◽  
Felix Hippauf ◽  
Anne Baasner ◽  
Susanne Dörfler ◽  
Holger Althues ◽  
...  

<p>Silicon carbon void structures (Si-C) are attractive anode materials for Lithium-ion batteries to cope with the volume changes of silicon during cycling. In this study, Si-C with varying Si contents (28 ‑ 37 %) are evaluated in all-solid-state batteries (ASSBs) for the first time. The carbon matrix enables enhanced performance and lifetime of the Si-C composites compared to bare silicon nanoparticles in half-cells even at high loadings of up to 7.4 mAh cm<sup>-2</sup>. In full cells with nickel-rich NCM (LiNi<sub>0.9</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub>, 210 mAh g<sup>-1</sup>), kinetic limitations in the anode lead to a lowered voltage plateau compared to NCM half-cells. The solid electrolyte (Li<sub>6</sub>PS<sub>5</sub>Cl, 3 mS cm<sup>-1</sup>) does not penetrate the Si-C void structure resulting in less side reactions and higher initial coulombic efficiency compared to a liquid electrolyte (72.7 % vs. 31.0 %). Investigating the influence of balancing of full cells using 3-electrode ASSB cells revealed a higher delithiation of the cathode as a result of the higher cut-off voltage of the anode at high n/p ratios. During galvanostatic cycling, full cells with either a low or rather high overbalancing of the anode showed the highest capacity retention of up to 87.7 % after 50 cycles. </p>

2021 ◽  
Author(s):  
Stephanie Poetke ◽  
Felix Hippauf ◽  
Anne Baasner ◽  
Susanne Dörfler ◽  
Holger Althues ◽  
...  

<p>Silicon carbon void structures (Si-C) are attractive anode materials for Lithium-ion batteries to cope with the volume changes of silicon during cycling. In this study, Si-C with varying Si contents (28 ‑ 37 %) are evaluated in all-solid-state batteries (ASSBs) for the first time. The carbon matrix enables enhanced performance and lifetime of the Si-C composites compared to bare silicon nanoparticles in half-cells even at high loadings of up to 7.4 mAh cm<sup>-2</sup>. In full cells with nickel-rich NCM (LiNi<sub>0.9</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub>, 210 mAh g<sup>-1</sup>), kinetic limitations in the anode lead to a lowered voltage plateau compared to NCM half-cells. The solid electrolyte (Li<sub>6</sub>PS<sub>5</sub>Cl, 3 mS cm<sup>-1</sup>) does not penetrate the Si-C void structure resulting in less side reactions and higher initial coulombic efficiency compared to a liquid electrolyte (72.7 % vs. 31.0 %). Investigating the influence of balancing of full cells using 3-electrode ASSB cells revealed a higher delithiation of the cathode as a result of the higher cut-off voltage of the anode at high n/p ratios. During galvanostatic cycling, full cells with either a low or rather high overbalancing of the anode showed the highest capacity retention of up to 87.7 % after 50 cycles. </p>


Author(s):  
Е.В. Астрова ◽  
В.П. Улин ◽  
А.В. Парфеньева ◽  
В.Б. Воронков

A new method for formation of porous silicon-carbon nanocomposites is proposed. It is based on reduction of carbon monofluoride by silicon. The resulting composite materials consist of silicon nanoparticles enclosed in a carbon shell. The contacts of such particles ensure the flow of current through the arising carbon matrix. Density, porosity and resistivity on the composition of the Si-C tablets obtained by the proposed method are determined. The materials under the study are of interest for high-capacity negative electrodes of lithium-ion batteries.


2018 ◽  
Author(s):  
Mikel Arrese-Igor ◽  
Norbert Radacsi

Current lithium-ion batteries are close to reaching their physicochemical energy density limit. Moreover, they present high operation risks regarding their liquid electrolyte. Solid-state batteries are a promising alternative to overcome these problems. They offer safe operation, and potentially improved energy and power density. The option of operating at higher voltages has led to the possibility of employing high capacity electrodes. In this study, the synthesis of a nanostructured anode through electrospinning was carried out. This electrode is based on polymer nanofibres with intercalated graphite particles. The effect of molecular weight, voltage, temperature and humidity has been studied for the formation of smooth and uniform nanofibres. At the optimized conditions, Polyethylene oxide (PEO)-Polyethylene glycol (PEG) nanofibres with diameters around 600 nm were successfully electrospun. The effect of graphite loading on the electrospinning of this solution was also studied. A 30% graphite particle loading in the final fibres was reached with a reproducible methodology. It was found that the electrospun graphite particles received a polymer coating during electrospinning. EDX analysis confirmed that most of the graphite particles are covered by a polymer layer, confirming this hypothesis. Even if it is unclear how this affects the behaviour of the graphite for energy storage, high graphite content was electrospun together with PEO nanofibres with a new methodology.


2018 ◽  
Vol 5 (6) ◽  
pp. 172370 ◽  
Author(s):  
Xuyan Liu ◽  
Xinjie Zhu ◽  
Deng Pan

Lithium-ion batteries are widely used in various industries, such as portable electronic devices, mobile phones, new energy car batteries, etc., and show great potential for more demanding applications like electric vehicles. Among advanced anode materials applied to lithium-ion batteries, silicon–carbon anodes have been explored extensively due to their high capacity, good operation potential, environmental friendliness and high abundance. Silicon–carbon anodes have demonstrated great potential as an anode material for lithium-ion batteries because they have perfectly improved the problems that existed in silicon anodes, such as the particle pulverization, shedding and failures of electrochemical performance during lithiation and delithiation. However, there are still some problems, such as low first discharge efficiency, poor conductivity and poor cycling performance, which need to be improved. This paper mainly presents some methods for solving the existing problems of silicon–carbon anode materials through different perspectives.


2015 ◽  
Vol 163 (2) ◽  
pp. A251-A254 ◽  
Author(s):  
Justin M. Whiteley ◽  
Ji Woo Kim ◽  
Daniela Molina Piper ◽  
Se-Hee Lee

2016 ◽  
Vol 7 ◽  
pp. 1289-1295 ◽  
Author(s):  
Mengting Liu ◽  
Wenhe Xie ◽  
Lili Gu ◽  
Tianfeng Qin ◽  
Xiaoyi Hou ◽  
...  

A novel network of spindle-like carbon nanofibers was fabricated via a simplified synthesis involving electrospinning followed by preoxidation in air and postcarbonization in Ar. Not only was the as-obtained carbon network comprised of beads of spindle-like nanofibers but the cubic MnO phase and N elements were successfully anchored into the amorphous carbon matrix. When directly used as a binder-free anode for lithium-ion batteries, the network showed excellent electrochemical performance with high capacity, good rate capacity and reliable cycling stability. Under a current density of 0.2 A g−1, it delivered a high reversible capacity of 875.5 mAh g−1 after 200 cycles and 1005.5 mAh g−1 after 250 cycles with a significant coulombic efficiency of 99.5%.


2014 ◽  
Vol 6 (7) ◽  
pp. 4678-4683 ◽  
Author(s):  
Yanjing Chen ◽  
Mengyun Nie ◽  
Brett L. Lucht ◽  
Amitesh Saha ◽  
Pradeep R. Guduru ◽  
...  

2016 ◽  
Vol 4 (29) ◽  
pp. 11381-11387 ◽  
Author(s):  
Lili Wu ◽  
Juan Yang ◽  
Xiangyang Zhou ◽  
Manfang Zhang ◽  
Yongpeng Ren ◽  
...  

Si nanoparticles embedded in a carbon matrix have been prepared by a carbonization process followed by a magnesiothermic reduction process.


Sign in / Sign up

Export Citation Format

Share Document