scholarly journals Azobenzene as a Photoregulator Covalently Attached to RNA: A Quantum Mechanics/Molecular Mechanics-Surface Hopping Dynamics Study

2018 ◽  
Author(s):  
Padmabati Mondal ◽  
Giovanni Granucci ◽  
Dominique Rastädter ◽  
Maurizio Persico ◽  
Irene Burghardt

The photoregulation of nucleic acids by azobenzene photoswitches has recently attracted considerable interest in the context of emerging biotechnological applications. To understand the mechanism of photoinduced isomerisation and conformational control in these complex biological environments, we employ a Quantum Mechanics/Molecular Mechanics (QM/MM) approach in conjunction with nonadiabatic Surface Hopping (SH) dynamics. Two representative RNA-azobenzene complexes are investigated, both of which contain the azobenzene chromophore covalently attached to an RNA double strand via a beta-deoxyribose linker. Due to the pronounced constraints of the local RNA environment, it is found that trans-to-cis isomerization is slowed down to a time scale of ~15 picoseconds, in contrast to 500 femtoseconds in vacuo, with a quantum yield reduced by a factor of two. By contrast, cis-to-trans isomerization remains in a sub-picosecond regime. A volume-conserving isomerization mechanism is found, similarly to the pedal-like mechanism previously identified for azobenzene in solution phase. Strikingly, the chiral RNA environment induces opposite right-handed and left-handed helicities of the ground-state cis-azobenzene chromophore in the two RNA-azobenzene complexes, along with an almost completely chirality conserving photochemical pathway for these helical enantiomers.

2018 ◽  
Author(s):  
Padmabati Mondal ◽  
Giovanni Granucci ◽  
Dominique Rastädter ◽  
Maurizio Persico ◽  
Irene Burghardt

The photoregulation of nucleic acids by azobenzene photoswitches has recently attracted considerable interest in the context of emerging biotechnological applications. To understand the mechanism of photoinduced isomerisation and conformational control in these complex biological environments, we employ a Quantum Mechanics/Molecular Mechanics (QM/MM) approach in conjunction with nonadiabatic Surface Hopping (SH) dynamics. Two representative RNA-azobenzene complexes are investigated, both of which contain the azobenzene chromophore covalently attached to an RNA double strand via a beta-deoxyribose linker. Due to the pronounced constraints of the local RNA environment, it is found that trans-to-cis isomerization is slowed down to a time scale of ~15 picoseconds, in contrast to 500 femtoseconds in vacuo, with a quantum yield reduced by a factor of two. By contrast, cis-to-trans isomerization remains in a sub-picosecond regime. A volume-conserving isomerization mechanism is found, similarly to the pedal-like mechanism previously identified for azobenzene in solution phase. Strikingly, the chiral RNA environment induces opposite right-handed and left-handed helicities of the ground-state cis-azobenzene chromophore in the two RNA-azobenzene complexes, along with an almost completely chirality conserving photochemical pathway for these helical enantiomers.


2018 ◽  
Vol 9 (20) ◽  
pp. 4671-4681 ◽  
Author(s):  
Padmabati Mondal ◽  
Giovanni Granucci ◽  
Dominique Rastädter ◽  
Maurizio Persico ◽  
Irene Burghardt

Azobenzene covalently attached to RNA undergoes trans-to-cis photo-switching on a time scale of ∼15 picoseconds – 30 times slower than in vacuo.


2018 ◽  
Vol 20 (43) ◽  
pp. 27501-27509 ◽  
Author(s):  
Yanan Guo ◽  
Franziska E. Wolff ◽  
Igor Schapiro ◽  
Marcus Elstner ◽  
Marco Marazzi

The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans-to-cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.


2020 ◽  
Author(s):  
Zenghui Yang

Quantum mechanics/molecular mechanics (QM/MM) methods partition the system into active and environmental regions and treat them with different levels of theory, achieving accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM methods allow on-the-fly changes to the QM/MM partitioning of the system. Many of the available energy-based AP-QM/MM methods partition the system according to distances to pre-chosen centers of active regions. For such AP-QM/MM methods, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to general geometrical or potential-related criteria, extending the range of application of energy-based AP-QM/MM methods to systems where active regions may occur or vanish during the simulation.


Author(s):  
Walker M. Jones ◽  
Aaron G. Davis ◽  
R. Hunter Wilson ◽  
Katherine L. Elliott ◽  
Isaiah Sumner

We present classical molecular dynamics (MD), Born-Oppenheimer molecular dynamics (BOMD), and hybrid quantum mechanics/molecular mechanics (QM/MM) data. MD was performed using the GPU accelerated pmemd module of the AMBER14MD package. BOMD was performed using CP2K version 2.6. The reaction rates in BOMD were accelerated using the Metadynamics method. QM/MM was performed using ONIOM in the Gaussian09 suite of programs. Relevant input files for BOMD and QM/MM are available.


2007 ◽  
Vol 3 (2) ◽  
pp. 628-639 ◽  
Author(s):  
Patrick Maurer ◽  
Alessandro Laio ◽  
Håkan W. Hugosson ◽  
Maria Carola Colombo ◽  
Ursula Rothlisberger

2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Gerard ’t Hooft

AbstractFast moving classical variables can generate quantum mechanical behavior. We demonstrate how this can happen in a model. The key point is that in classically (ontologically) evolving systems one can still define a conserved quantum energy. For the fast variables, the energy levels are far separated, such that one may assume these variables to stay in their ground state. This forces them to be entangled, so that, consequently, the slow variables are entangled as well. The fast variables could be the vacuum fluctuations caused by unknown super heavy particles. The emerging quantum effects in the light particles are expressed by a Hamiltonian that can have almost any form. The entire system is ontological, and yet allows one to generate interference effects in computer models. This seemed to lead to an inexplicable paradox, which is now resolved: exactly what happens in our models if we run a quantum interference experiment in a classical computer is explained. The restriction that very fast variables stay predominantly in their ground state appears to be due to smearing of the physical states in the time direction, preventing their direct detection. Discussions are added of the emergence of quantum mechanics, and the ontology of an EPR/Bell Gedanken experiment.


Sign in / Sign up

Export Citation Format

Share Document