Nitroxyl Modified Tobacco Mosaic Virus as a Metal-Free High-Relaxivity MRI and EPR Active Superoxide Sensor

2018 ◽  
Author(s):  
Madushani Dharmarwardana ◽  
André F. Martins ◽  
Zhuo Chen ◽  
Philip M. Palacios ◽  
Chance M. Nowak ◽  
...  

Superoxide overproduction is known to occur in multiple disease states requiring critical care yet non-invasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by “click conjugating” paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced <i>in vivo</i> to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species—in particular superoxide—and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for <i>T<sub>1</sub></i> contrast at low field (<3.0 T), and <i>T<sub>2</sub></i> contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for “quenchless fluorescent” bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. <a>Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.</a>

2018 ◽  
Author(s):  
Madushani Dharmarwardana ◽  
André F. Martins ◽  
Zhuo Chen ◽  
Philip M. Palacios ◽  
Chance M. Nowak ◽  
...  

Superoxide overproduction is known to occur in multiple disease states requiring critical care yet non-invasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by “click conjugating” paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced <i>in vivo</i> to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species—in particular superoxide—and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for <i>T<sub>1</sub></i> contrast at low field (<3.0 T), and <i>T<sub>2</sub></i> contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for “quenchless fluorescent” bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. <a>Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.</a>


2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


2021 ◽  
Vol 22 (4) ◽  
pp. 1598
Author(s):  
Amber L. Hendricks ◽  
Christine Wachnowsky ◽  
Brian Fries ◽  
Insiya Fidai ◽  
James A. Cowan

Lipoyl synthase (LIAS) is an iron–sulfur cluster protein and a member of the radical S-adenosylmethionine (SAM) superfamily that catalyzes the final step of lipoic acid biosynthesis. The enzyme contains two [4Fe–4S] centers (reducing and auxiliary clusters) that promote radical formation and sulfur transfer, respectively. Most information concerning LIAS and its mechanism has been determined from prokaryotic enzymes. Herein, we detail the expression, isolation, and characterization of human LIAS, its reactivity, and evaluation of natural iron–sulfur (Fe–S) cluster reconstitution mechanisms. Cluster donation by a number of possible cluster donor proteins and heterodimeric complexes has been evaluated. [2Fe–2S]-cluster-bound forms of human ISCU and ISCA2 were found capable of reconstituting human LIAS, such that complete product turnover was enabled for LIAS, as monitored via a liquid chromatography–mass spectrometry (LC–MS) assay. Electron paramagnetic resonance (EPR) studies of native LIAS and substituted derivatives that lacked the ability to bind one or the other of LIAS’s two [4Fe–4S] clusters revealed a likely order of cluster addition, with the auxiliary cluster preceding the reducing [4Fe–4S] center. These results detail the trafficking of Fe–S clusters in human cells and highlight differences with respect to bacterial LIAS analogs. Likely in vivo Fe–S cluster donors to LIAS are identified, with possible connections to human disease states, and a mechanistic ordering of [4Fe–4S] cluster reconstitution is evident.


2010 ◽  
Vol 132 (32) ◽  
pp. 11036-11038 ◽  
Author(s):  
Ningning Liu ◽  
Bo Peng ◽  
Yuan Lin ◽  
Zhaohui Su ◽  
Zhongwei Niu ◽  
...  

2006 ◽  
Vol 80 (17) ◽  
pp. 8329-8344 ◽  
Author(s):  
Jamie Ashby ◽  
Emmanuel Boutant ◽  
Mark Seemanpillai ◽  
Adrian Sambade ◽  
Christophe Ritzenthaler ◽  
...  

ABSTRACT The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection.


1966 ◽  
Vol 19 (1) ◽  
pp. 140-IN8 ◽  
Author(s):  
Albert Siegel ◽  
G.J. Hills ◽  
Roy Markham

1984 ◽  
Vol 179 (6) ◽  
pp. 507-516 ◽  
Author(s):  
Barbara Pustowoit ◽  
Wladimir Pustowoit ◽  
Gottfried Schuster

Sign in / Sign up

Export Citation Format

Share Document