scholarly journals Probing the Mechanochemistry of Metal-Organic Frameworks with Low-Frequency Vibrational Spectroscopy

2018 ◽  
Author(s):  
Wei Zhang ◽  
Jefferson Maul ◽  
Diana Vulpe ◽  
Peyman Z. Moghadam ◽  
David Fairen-jimenez ◽  
...  

<div>The identification of low-frequency vibrational motions of metal-organic frameworks (MOFs) allows for a full understanding of their mechanical and structural response upon perturbation by external stimuli such as temperature, pressure, and adsorption. Here, we describe the unique combination of an experimental temperature- and pressure-dependent terahertz spectroscopy system with state-of-the-art quantum mechanical simulation to measure and atomistically assign specific low-frequency vibrational modes that directly drive the mechanochemical properties of this important class of porous materials. Our work highlights the complex interplay between structural, vibrational, and mechanochemical phenomena, all of which are key to the effective exploitation of MOFs. We demonstrate the critical importance of terahertz vibrational motions on the function of MOFs, and how this information can be measured and interpreted in a method that can be applied widely to any supramolecular materials. </div><div><br></div>

Author(s):  
Wei Zhang ◽  
Jefferson Maul ◽  
Diana Vulpe ◽  
Peyman Z. Moghadam ◽  
David Fairen-jimenez ◽  
...  

<div>The identification of low-frequency vibrational motions of metal-organic frameworks (MOFs) allows for a full understanding of their mechanical and structural response upon perturbation by external stimuli such as temperature, pressure, and adsorption. Here, we describe the unique combination of an experimental temperature- and pressure-dependent terahertz spectroscopy system with state-of-the-art quantum mechanical simulation to measure and atomistically assign specific low-frequency vibrational modes that directly drive the mechanochemical properties of this important class of porous materials. Our work highlights the complex interplay between structural, vibrational, and mechanochemical phenomena, all of which are key to the effective exploitation of MOFs. We demonstrate the critical importance of terahertz vibrational motions on the function of MOFs, and how this information can be measured and interpreted in a method that can be applied widely to any supramolecular materials. </div><div><br></div>


2018 ◽  
Author(s):  
Qi Li ◽  
Adam J. Zaczek ◽  
Timothy M. Korter ◽  
J. Axel Zeitler ◽  
Michael T. Ruggiero

<div>Understanding the nature of the interatomic interactions present within the pores of metal-organic frameworks</div><div>is critical in order to design and utilize advanced materials</div><div>with desirable applications. In ZIF-8 and its cobalt analogue</div><div>ZIF-67, the imidazolate methyl-groups, which point directly</div><div>into the void space, have been shown to freely rotate - even</div><div>down to cryogenic temperatures. Using a combination of ex-</div><div>perimental terahertz time-domain spectroscopy, low-frequency</div><div>Raman spectroscopy, and state-of-the-art ab initio simulations,</div><div>the methyl-rotor dynamics in ZIF-8 and ZIF-67 are fully charac-</div><div>terized within the context of a quantum-mechanical hindered-</div><div>rotor model. The results lend insight into the fundamental</div><div>origins of the experimentally observed methyl-rotor dynamics,</div><div>and provide valuable insight into the nature of the weak inter-</div><div>actions present within this important class of materials.</div>


2018 ◽  
Vol 3 (3) ◽  
pp. 748-754 ◽  
Author(s):  
Paula García-Holley ◽  
Benjamin Schweitzer ◽  
Timur Islamoglu ◽  
Yangyang Liu ◽  
Lu Lin ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Shamsur Rahman ◽  
Arash Arami-Niya ◽  
Xiaoxian Yang ◽  
Gongkui Xiao ◽  
Gang (Kevin) Li ◽  
...  

Abstract“Breathing” and “gating” are striking phenomena exhibited by flexible metal-organic frameworks (MOFs) in which their pore structures transform upon external stimuli. These effects are often associated with eminent steps and hysteresis in sorption isotherms. Despite significant mechanistic studies, the accurate description of stepped isotherms and hysteresis remains a barrier to the promised applications of flexible MOFs in molecular sieving, storage and sensing. Here, we investigate the temperature dependence of structural transformations in three flexible MOFs and present a new isotherm model to consistently analyse the transition pressures and step widths. The transition pressure reduces exponentially with decreasing temperature as does the degree of hysteresis (c.f. capillary condensation). The MOF structural transition enthalpies range from +6 to +31 kJ·mol−1 revealing that the adsorption-triggered transition is entropically driven. Pressure swing adsorption process simulations based on flexible MOFs that utilise the model reveal how isotherm hysteresis can affect separation performance.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1273 ◽  
Author(s):  
Huacheng Zhang ◽  
Zhaona Liu ◽  
Jian Shen

Recent progress about a novel organic–inorganic hybrid materials, namely cyclodextrins (CDs) modified/coated metal–organic frameworks (MOFs) is summarized by using a special categorization method focusing on the interactions between CDs and MOFs moieties, such as ligand–metal cations interactions, supramolecular interactions including host–guest interactions and hydrogen bonding, as well as covalent bonds. This review mainly focuses on the interactions between CDs and MOFs and the strategy of combining them together, diverse external stimuli responsiveness of CDs-modified/coated MOFs, as well as applications of these hybrid materials to drug delivery and release system, catalysis and detection materials. Additionally, due to the importance of investigating advanced chemical architectures and physiochemical properties of CDs-modified/coated MOFs, a separate section is involved in diverse characterization methods and instruments. Furthermore, this minireview also foresees future research directions in this rapidly developing field.


2019 ◽  
Vol 401 ◽  
pp. 213064 ◽  
Author(s):  
Noor Aljammal ◽  
Christia Jabbour ◽  
Joris W. Thybaut ◽  
Kristof Demeestere ◽  
Francis Verpoort ◽  
...  

2018 ◽  
Vol 2 (2) ◽  
pp. 219-234 ◽  
Author(s):  
Qun-xing Luo ◽  
Bo-wen An ◽  
Min Ji ◽  
Jie Zhang

This critical review presents the fundamentals, challenges, and outlooks in MTHMs according to state-of-the-art progress and first-hand experience.


CrystEngComm ◽  
2018 ◽  
Vol 20 (18) ◽  
pp. 2528-2539 ◽  
Author(s):  
Jintha Thomas-Gipson ◽  
Garikoitz Beobide ◽  
Oscar Castillo ◽  
Antonio Luque ◽  
Jon Pascual-Colino ◽  
...  

This article evaluates the strategy to design supramolecular metal–organic frameworks using metal–nucleobase entities as building units.


2018 ◽  
Vol 54 (45) ◽  
pp. 5776-5779 ◽  
Author(s):  
Qi Li ◽  
Adam J. Zaczek ◽  
Timothy M. Korter ◽  
J. Axel Zeitler ◽  
Michael T. Ruggiero

In ZIF-8 and its cobalt analogue ZIF-67, the imidazolate methyl-groups, which point directly into the void space, have been shown to freely rotate – even down to cryogenic temperatures.


Sign in / Sign up

Export Citation Format

Share Document