scholarly journals The Conflict Between Greece And Turkey In The Mediterranean Sea (International Maritime Law Study)

Jurnal Hukum ◽  
2020 ◽  
Vol 36 (2) ◽  
pp. 126
Author(s):  
Edanur Yıldız

Turkey and Greece are again dragged into a new conflict in the East Mediterranean. Turkey and Greece vie for supremacy in the eastern Mediterranean. Turkey, for its part, indicated that Greece's claim to the territory would amount to a siege in the country by giving Greece a disproportionate amount of territory. This study aims to rethink the conflict between Greece and Turkey in the waters of the Mediterranean sea in the view of international maritime law. This study uses an empirical juridical approach. The Result of this research is Turkey does not ignore the Greece rights, Greece ignores the international law with its extended or excessive maritime claims. Greece tries to give full entitlement of the islands in Mediterranean and Agean. Whereas the effect Formula is applied by international courts.

ALGAE ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 175-193
Author(s):  
Moufida Abdennadher ◽  
Amel Bellaaj Zouari ◽  
Walid Medhioub ◽  
Antonella Penna ◽  
Asma Hamza

This study provides the first report of the presence of Coolia malayensis in the Mediterranean Sea, co-occurring with C. monotis. Isolated strains from the Gulf of Gabès, Tunisia (South-eastern Mediterranean) were identified by morphological characterization and phylogenetic analysis. Examination by light and scanning electron microscopy revealed no significant morphological differences between the Tunisian isolates and other geographically distant strains of C. monotis and C. malayensis. Phylogenetic trees based on ITS1-5.8S-ITS2 and D1‒D3/28S rDNA sequences showed that C. monotis strains clustered with others from the Mediterranean and Atlantic whereas the C. malayensis isolate branched with isolates from the Pacific and the Atlantic, therefore revealing no geographical trend among C. monotis and C. malayensis populations. Ultrastructural analyses by transmission electron microscopy revealed the presence of numerous vesicles containing spirally coiled fibers in both C. malayensis and C. monotis cells, which we speculate to be involved in mucus production.


2018 ◽  
Author(s):  
Abir Fersi ◽  
Nawfel Mosbahi ◽  
Ali Bakalem ◽  
Jean-Philippe Pezy ◽  
Alexandrine Baffreau ◽  
...  

The Gulf of Gabès on the southern coasts of Tunisia in the central part of the Mediterranean is a very shallow basin, characterized by semidiurnal tides, attaining a range of 2.3 m during spring tides. The intertidal zone was covered by extended Zostera (Zosterella) noltei Hornemann, 1832 beds mainly developed around the Kneiss Islands while tidal channels ensured the water circulation in this sub-tropical environment with very low freshwater input and high summer temperature. In spite of protected conventions, the area remained under high human pressures: overfishing, and the impact of the pollution of the phosphate industry. Intensive sampling in both intertidal and shallow subtidal zones during annual cycles permitted to identify a rich macrofauna which increase considerably the species known in this eastern part of the Mediterranean Sea. More than 50 species are added for the Tunisian fauna. Moreover, patterns of diversity are analysed with the sediment types, presence or absence of Zostera noltei seagrass bed, and human pressures. The list of the collected species are compared with those of surrounding areas in both Western and Eastern Mediterranean Sea.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


2021 ◽  
Author(s):  
Débora Silva Raposo ◽  
Raphaël Morard ◽  
Christiane Schmidt ◽  
Michal Kucera

<p>In recent decades the “Lessepsian” migration caused a rapid change in the marine community composition due to the invasion of alien species from the Red Sea into the Mediterranean Sea. Among these invaders is the large benthic foraminifera <em>Amphistegina lobifera</em>, a diatom-bearing species that recently reached the invasion front in Sicily. There it copes with colder winters and broader temperature than in its original source, the Red Sea. It is not yet known how (or if) the population from the invasion front has developed adaptation to this new thermal regime. Understanding the modern marine invasive patterns is a crucial tool to predict future invasive successes in marine environments. Therefore, in this study we aim to evaluate the physiological responses to cold temperatures of <em>A. lobifera</em> populations at three different invasive stages: source (Red Sea), early invader (Eastern Mediterranean) and invasion front (Sicily). For this, we conducted a culturing experiment in which we monitored the responses of the foraminifera (growth, motility) to temperatures of 10, 13, 16, 19°C + control (25°C) over four weeks. To address what is the role of their endosymbionts in the adaptation process, we also monitored their photosynthetic activity (Pulse Amplitude Modulation - PAM fluorometer) during the experiment. The growth rate of the foraminifera was reduced for all populations below 19°C as well as the motility, reduced until 16°C and dropping to zero below 13°C. The response of the endosymbionts was however different. There was a reduced photosynthetic activity of the Red Sea and Eastern Mediterranean populations at colder temperatures observed by the lower maximum quantum yield (Fv:Fm) and effective quantum yield (Y(II)), when compared to their initial levels and to the other treatments. In the meantime, the endosymbionts of the Sicily population stood out with the highest photosynthetic activity (Fv:Fm and Y(II)) in the treatments bellow 13 °C (P < 0.05). In conclusion, we observed that while the host responses were similar between the three populations, the endosymbionts from the invasion front population shows the best performance at colder temperatures. This suggests that the photo-symbiosis has an important role in adaptation, most likely being a key factor to the success of past and future migrations.</p>


2018 ◽  
Vol 6 (4) ◽  
pp. 121 ◽  
Author(s):  
Manel Grifoll ◽  
Thanassis Karlis ◽  
M. Ortego

This research investigates the traffic share evolution of the container throughput in the Mediterranean ports from 2000 to 2015 considering hierarchical clustering and concentration indexes. Compositional Data analysis techniques are used to illustrate periods with similar traffic share composition. Two different regions (East and West) in the Mediterranean Sea (Med) are selected in the function of the long haul services. The standard concentration indexes (i.e., concentration ratio, Gini coefficient, and Normalized Herfindahl-Hirschman) reveal a gentle decreasing of the concentration with relevant fluctuations mainly in the East region. This is due to the investment in port infrastructure in the area resulting from privatization initiatives in many Eastern Mediterranean countries. The periods obtained from the hierarchical clustering show a differentiated pattern in traffic share composition. For these periods, the shift-share results are consistent with traffic fluctuations and in line with the evolution of the concentration indexes. The combination of methods has allowed a good interpretation of the spatial and temporal evolution of the Med ports’ traffic being the methodology applicable elsewhere in the context of port system analysis.


2016 ◽  
Vol 85 (3) ◽  
pp. 235-259 ◽  
Author(s):  
Graham Butler ◽  
Martin Ratcovich

This article addresses the main legal challenges facing the European Union (eu) Naval Force, eunavfor Med (‘Operation Sophia’), established in 2015, to disrupt human smuggling and trafficking activities in the Mediterranean Sea. It examines a number of legal issues that have given rise to scepticism on the viability of this type of operation, ranging from challenges under European Union law regarding mandate and oversight, to complex questions of compliance with international law. Forcible measures may be at variance with the international law of the sea, binding on the eu and its Member States alike. Even if such strictures can be avoided by a broad United Nations mandate and/or the consent of the neighbouring government(s), international refugee law and international human rights law provide limitations on the measures that Operation Sophia will be tasked with. Different avenues will be explored to ensure the Operation’s compliance with these different legal regimes.


2020 ◽  
Author(s):  
Michael Nirrengarten ◽  
Geoffroy Mohn ◽  
François Sapin ◽  
Jon Teasdale ◽  
Charlotte Nielsen ◽  
...  

<p>At the transition between the Atlantic and the Tethys oceanic systems, the plate kinematic configuration of the East Mediterranean domain during the early Mesozoic is still poorly understood. Several factors like the Messinian salt, the different compressional events, the thick carbonate platforms and Cenozoic deltaic deposits combine to blur the imaging of Eastern Mediterranean rifted margins. This has led to distinct and often markedly contrasting interpretations of the timing of opening (ranging from Carboniferous to Cretaceous), structural evolution (divergent to transform segments) and kinematics (N-S to WNW-ESE extension).</p><p>To address this long-standing problem, we gathered disparate geological observations from the margins surrounding the Eastern Mediterranean Sea to integrate them in a global plate model. Distinct, end-member plate kinematic scenarios were tested, challenged and iterated by observations from the Eastern Mediterranean rifted margins.</p><p>The N-African and NW-Arabian margins of the Eastern Mediterranean Sea are relatively weakly reactivated by the different compressional events and were chosen as the starting point of our integrative tectonic study. Legacy plate models for the area mostly show N-S to NNE-SSW opening of the Eastern Mediterranean of pre-Jurassic age. We have integrated dense industrial seismic data, deep boreholes and dredge data, as well as enhanced satellite gravity images that strongly suggests WNW-ESE oriented lithospheric extension and sea floor spreading during the Late Triassic to Early Jurassic.</p><p>Our approach starts by the mapping of the main extensional and compressional structures, the different crustal domains and the pre-rift facies distribution. We investigate the potential conjugate margins now located and imbricated in the Dinarides, Hellenides and Taurides on the northern side of the East Mediterranean Sea by looking at the drowning ages of the Mesozoic carbonate platform and the related rift structures. We refine the full fit and initial spreading of the Atlantic Ocean using crustal thickness and features observed on both sides of the system to calibrate the motion of Eurasia and Africa, which determine the space available to develop the Eastern Mediterranean Sea. Initial tests on the evolution of the main tectonic plates highlight an insufficient eastward motion of Africa relative to Eurasia (Iberia) to accommodate the extension of Eastern Mediterranean during the Jurassic with a purely WNW-ESE direction of extension. Further hypotheses remain to be tested. However, for now, a scenario involving poly-phased and poly-directional motion of the conjugate continent “Greater Adria” during Jurassic is favoured to model the Eastern Mediterranean plate evolution in relation with the closure of the Neo-Tethys further north.</p>


Sign in / Sign up

Export Citation Format

Share Document