scholarly journals Energy Characteristics of the DC Distributed Power Supply Systems

Author(s):  
Viktor Sychenko ◽  
Valeriy Kuznetsov ◽  
Artur Rojek ◽  
Petro Hubskyi ◽  
Yevhen Kosariev

Currently the circuit technology of the DC traction power supply system cannot provide the necessary requirements for introduction of high-speed traffic. Numbers of measures and tools have been developed to improve the traction lines that no longer meet current requirements. One of the most promising means for strengthening the traction DC lines is transition to the distributed power supply of the rolling stock. In this article, a comparative analysis was carried out of energy indicators of the classic centralized power system and distributed power systems with use of one aggregate traction substation and with use of the solar generators. That comparative analysis of these systems was performed on a simulation model with the same parameters of the traction line and rolling stock.

2018 ◽  
Vol 216 ◽  
pp. 02006
Author(s):  
Aleksandr Cherepanov ◽  
Vasily Zakaryukin ◽  
Andrey Kryukov

Upgrading of traction power supply systems will be required to transfer electrified railway lines to high-speed traffic. Coaxial cables and balancing transformers can be used as technical upgrading means. The article presents the results of computer simulation in the Fazonord software complex of the traditional 2x25 kV traction system, as well as systems with coaxial cables and Woodbridge symmetric transformers. Simulation results showed that the use of cables contributes to a significant increase in the level of voltage on current collectors of electric rolling stock. Use of modified Woodbridge transformers makes it possible to reduce the imbalance coefficient by the reverse sequence on high voltage buses of traction substations. However, the reduction is insignificant and depends on the modes of movement of trains in adjacent inter-station zones. The biggest positive effects occur in the integrated application of balancing transformers and coaxial cables.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 253
Author(s):  
Si Wu ◽  
Mingli Wu ◽  
Yi Wang

The existing problems of the traction power-supply system (i.e., the existence of the neutral section and the power quality problems) limit the development of railways, especially high-speed railways, which are developing rapidly worldwide. The existence of the neutral section leads to the speed loss and traction loss as well as mechanical failures, all of which threaten the fast and safe operation of the train and the system. Meanwhile, the power quality problems (e.g., the negative sequence current, the reactive power, and the harmonic) can bring a series of problems that cannot be ignored on the three-phase grid side. In response, many researchers have proposed co-phase power-supply schemes to solve these two problems simultaneously. Given that the auto-transformer (AT) power-supply mode has become the main power-supply mode for the high-speed railway traction power-supply system, it has a bright future following the rapid development of the high-speed railway. In addition, there is no co-phase power-supply scheme designed for AT power-supply mode in the existing schemes. Therefore, the main contribution of this paper is to propose a specifically designed power-supply mode more suitable for the AT, as well as to establish the control systems for the rectifier side and the inverter side. In addition, for the proposed scheme, the operation principle is analyzed, the mathematical model is built, and the control system is created, and its functionality is verified by simulation, and its advantages are compared and summarized finally. The result proves that it can meet functional requirements. At the same time, compared with the existing co-phase power-supply scheme, it saves an auto-transformer in terms of topology, reduces the current stress by 10.9% in terms of the current stress of the switching device, and reduces the power loss by 0.25% in terms of the entire system power loss, which will result in a larger amount of electricity being saved. All of this makes it a more suitable co-phase power-supply scheme for the AT power-supply mode.


2011 ◽  
Vol 130-134 ◽  
pp. 304-308
Author(s):  
Ling Wei ◽  
Jing Shuai Xiao ◽  
Da Yong Geng

The application of electric power, which acts as a pillar energy and economic artery in modern society, is one of the most important symbols of the level of development and comprehensive national power of a country. Var is a crucial factor for the design and operation of AC power systems, and is closely bound up with the safety, stabilization, and economical operation of power systems. With the development of electrified railway, the importance of the dynamic var compensation for traction power supply systems of electrified railway becomes more and more distinct. Developing the var compensation strategy vigorously has important senses in theory and practice. In this article, synthetically considering technique and economic leval of power systems in our country, parameters modeling and design and verification and specific engineering application of a var compensation method are presented. This method is a preferable one for resolving undesirable effect on power systems from traction power supply systems of electrified railway, especially having dynamic and real time characteristics of var compensation.


2018 ◽  
Vol 138 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Tetsushi Watanabe ◽  
Tomohiro Owaku ◽  
Masayuki Seto ◽  
Hitoshi Hayashiya ◽  
Yusuke Takido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document