scholarly journals Evaluation of texture feature based on basic local binary pattern for wood defect classification

Author(s):  
Eihab Abdelkariem Bashir Ibrahim ◽  
Ummi Raba'ah Hashim ◽  
Lizawati Salahuddin ◽  
Nor Haslinda Ismail ◽  
Ngo Hea Choon ◽  
...  

Wood defects detection has been studied a lot recently to detect the defects on the wood surface and assist the manufacturers in having a clear wood to be used to produce a high-quality product. Therefore, the defects on the wood affect and reduce the quality of wood. This research proposes an effective feature extraction technique called the local binary pattern (LBP) with a common classifier called Support Vector Machine (SVM). Our goal is to classify the natural defects on the wood surface. First, preprocessing was applied to convert the RGB images into grayscale images. Then, the research applied the LBP feature extraction technique with eight neighbors (P=8) and several radius (R) values. After that, we apply the SVM classifier for the classification and measure the proposed technique's performance. The experimental result shows that the average accuracy achieved is 65% on the balanced dataset with P=8 and R=1. It indicates that the proposed technique works moderately well to classify wood defects. This study will consequently contribute to the overall wood defect detection framework, which generally benefits the automated inspection of the wood defects.

Author(s):  
Sharad Sarjerao Jagtap ◽  
Rajesh Kumar M.

This chapter gives an effective and efficient technique that can detect epilepsy in real time. It is low cost, low power, and real-time devices that can easily detect epilepsy. Along with EEG device, one can upgrade with GSM module to alert the doctors and parents of patients about its occurrence to prevent a sudden fall, which may cause injury and death. The accuracy of this EEG device depends on the quality of feature extraction technique and classification algorithm. In this chapter, support vector machine (SVM) is used as a classifier. Wavelet transform gives feature extraction, which helps to train data and to detect normal or seizure patients. Discrete wavelet transform (DWT) decomposes the signals into three decomposition levels. In this detection, mean, median, and non-linear parameter entropy were calculated for every sub-band as key parameters. The extracted features are then applied to SVM classifier for the classification. Better accuracy of classification is obtained using wavelet and SVM classifier.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1215 ◽  
Author(s):  
Zhaoxi Li ◽  
Yaan Li ◽  
Kai Zhang ◽  
Jianli Guo

Ship-radiated noise signal has a lot of nonlinear, non-Gaussian, and nonstationary information characteristics, which can reflect the important signs of ship performance. This paper proposes a novel feature extraction technique for ship-radiated noise based on improved intrinsic time-scale decomposition (IITD) and multiscale dispersion entropy (MDE). The proposed feature extraction technique is named IITD-MDE. First, IITD is applied to decompose the ship-radiated noise signal into a series of intrinsic scale components (ISCs). Then, we select the ISC with the main information through the correlation analysis, and calculate the MDE value as feature vectors. Finally, the feature vectors are input into the support vector machine (SVM) for ship classification. The experimental results indicate that the recognition rate of the proposed technique reaches 86% accuracy. Therefore, compared with the other feature extraction methods, the proposed method provides a new solution for classifying different types of ships effectively.


2020 ◽  
Vol 19 (2) ◽  
pp. 1-11
Author(s):  
Sani Saminu ◽  
Guizhi Xu ◽  
Shuai Zhang ◽  
Abd El Kader Isselmou ◽  
Adamu Halilu Jabire ◽  
...  

These Electroencephalography (EEG) signals is an effective tool for identification, monitoring, and treatment of epilepsy, but EEG signals need highly experienced personnel to interpret it correctly due to its complexity, even for an expert it is monotonous and usually consume much time. Therefore, the automatic computer-aided device (CAD) needs to be developed to overcome those challenges associated with epilepsy interpretation and diagnosis. The system efficiency relies largely on the quality of features supply as input to classifiers. This paper presents an efficient feature extraction technique to develop a CAD system that can detect and classify normal, interictal and ictal epilepsy signals correctly with high accuracy. Our approach employs time-frequency features, statistical features and nonlinear features combined as hybrid features to train and test the classifier. Machine learning classifiers of multi-class support vector machine (mSVM) and feed-forward neural network (FFNN) with fivefold cross-validation are used to classifies normal, interictal and ictal with our proposed features. Our system was tested using a publicly available database with three classes each of 100 single channels EEG signals of 4096 samples point each. Based on sensitivity, specificity, and accuracy, our proposed approach of multiclass classification shows a good performance with 96.7%, 98.3% and 100% of sensitivity, specificity, and accuracy respectively.


Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 16
Author(s):  
Zhaoxi Li ◽  
Yaan Li ◽  
Kai Zhang ◽  
Jianli Guo

Entropy feature analysis is an important tool for the classification and identification of different types of ships. In order to improve the limitations of traditional feature extraction of ship-radiation noise in complex marine environments, we proposed a novel feature extraction method for ship-radiated noise based on improved intrinsic time-scale decomposition (IITD) and multiscale dispersion entropy (MDE). The proposed feature extraction technique is named IITD-MDE. IITD, as an improved algorithm, has more reliable performance than intrinsic time-scale decomposition (ITD). Firstly, five types of ship-radiated noise signals are decomposed into a series of intrinsic scale component (ISCs) by IITD. Then, we select the ISC with the main information through correlation analysis, and calculate the MDE value as a feature vector. Finally, the feature vector is input into the support vector machine (SVM) classifier to analyze and get classification. The experimental results demonstrate that the recognition rate of the proposed technique reaches 86% accuracy. Therefore, compared with the other feature extraction methods, the proposed method is able to classify the different types of ships effectively.


Sign in / Sign up

Export Citation Format

Share Document