Real-Time EEG Device for Epilepsy Detection Using Wavelet Transform and Support Vector Machine

Author(s):  
Sharad Sarjerao Jagtap ◽  
Rajesh Kumar M.

This chapter gives an effective and efficient technique that can detect epilepsy in real time. It is low cost, low power, and real-time devices that can easily detect epilepsy. Along with EEG device, one can upgrade with GSM module to alert the doctors and parents of patients about its occurrence to prevent a sudden fall, which may cause injury and death. The accuracy of this EEG device depends on the quality of feature extraction technique and classification algorithm. In this chapter, support vector machine (SVM) is used as a classifier. Wavelet transform gives feature extraction, which helps to train data and to detect normal or seizure patients. Discrete wavelet transform (DWT) decomposes the signals into three decomposition levels. In this detection, mean, median, and non-linear parameter entropy were calculated for every sub-band as key parameters. The extracted features are then applied to SVM classifier for the classification. Better accuracy of classification is obtained using wavelet and SVM classifier.

2018 ◽  
Vol 7 (4.10) ◽  
pp. 935
Author(s):  
Vasudha Harlalka ◽  
Viraj Pradip Puntambekar ◽  
Kalugotla Raviteja ◽  
P. Mahalakshmi

Epilepsy is a prevalent condition, mainly affecting the nervous system of the human body. Electroencephalogram (EEG) is used to evaluate and examine the seizures caused due to epilepsy. The issue of low precision and poor comprehensiveness is worked upon using dual tree- complex wavelet transform (DT-CWT), rather than discrete wavelet transform (DWT). Here, Logarithmic energy entropy (LogEn) and Shannon entropy (ShanEn) are taken as input features. These features are fed to Linear Support Vector Machine     (L-SVM) Classifier. For LogEn, accuracy of 100% for A-E, 99.34% for AB-E, and 98.67% for AC-E is achieved. While ShanEn combinations give accuracy of 96.67% for AB-E and 95.5% for ABC-E. These results showcase that our methodology is suitable for overcoming the problem and can become an alternate option for clinical diagnosis.  


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


Author(s):  
Nilava Mukherjee ◽  
Sumitra Mukhopadhyay ◽  
Rajarshi Gupta

Abstract Motivation: In recent times, mental stress detection using physiological signals have received widespread attention from the technology research community. Although many motivating research works have already been reported in this area, the evidence of hardware implementation is occasional. The main challenge in stress detection research is using optimum number of physiological signals, and real-time detection with low complexity algorithm. Objective: In this work, a real-time stress detection technique is presented which utilises only photoplethysmogram (PPG) signal to achieve improved accuracy over multi-signal-based mental stress detection techniques. Methodology: A short segment of 5s PPG signal was used for feature extraction using an autoencoder (AE), and features were minimized using recursive feature elimination (RFE) integrated with a multi-class support vector machine (SVM) classifier. Results: The proposed AE-RFE-SVM based mental stress detection technique was tested with WeSAD dataset to detect four-levels of mental state, viz., baseline, amusement, meditation and stress and to achieve an overall accuracy, F1 score and sensitivity of 99%, 0.99 and 98% respectively for 5s PPG data. The technique provided improved performance over discrete wavelet transformation (DWT) based feature extraction followed by classification with either of the five types of classifiers, viz., SVM, random forest (RF), k-nearest neighbour (k-NN), linear regression (LR) and decision tree (DT). The technique was translated into a quad-core-based standalone hardware (1.2 GHz, and 1 GB RAM). The resultant hardware prototype achieves a low latency (~0.4 s) and low memory requirement (~1.7 MB). Conclusion: The present technique can be extended to develop remote healthcare system using wearable sensors.


2017 ◽  
Vol 5 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Taro Nakano ◽  
B.T. Nukala ◽  
J. Tsay ◽  
Steven Zupancic ◽  
Amanda Rodriguez ◽  
...  

Due to the serious concerns of fall risks for patients with balance disorders, it is desirable to be able to objectively identify these patients in real-time dynamic gait testing using inexpensive wearable sensors. In this work, the authors took a total of 49 gait tests from 7 human subjects (3 normal subjects and 4 patients), where each person performed 7 Dynamic Gait Index (DGI) tests by wearing a wireless gait sensor on the T4 thoracic vertebra. The raw gait data is wirelessly transmitted to a near-by PC for real-time gait data collection. To objectively identify the patients from the gait data, the authors used 4 different types of Support Vector Machine (SVM) classifiers based on the 6 features extracted from the raw gait data: Linear SVM, Quadratic SVM, Cubic SVM, and Gaussian SVM. The Linear SVM, Quadratic SVM and Cubic SVM all achieved impressive 98% classification accuracy, with 95.2% sensitivity and 100% specificity in this work. However, the Gaussian SVM classifier only achieved 87.8% accuracy, 71.7% sensitivity, and 100% specificity. The results obtained with this small number of human subjects indicates that in the near future, the authors should be able to objectively identify balance-disorder patients from normal subjects during real-time dynamic gaits testing using intelligent SVM classifiers.


Sign in / Sign up

Export Citation Format

Share Document