scholarly journals THE LOWER EXTREMITY GRADING SYSTEM (LEGS) TO EVALUATE BASELINE LOWER EXTREMITY PERFORMANCE IN HIGH SCHOOL ATHLETES

2018 ◽  
Vol 13 (3) ◽  
pp. 401-409
Author(s):  
Joseph Smith ◽  
Nick DePhillipo ◽  
Shannon Azizi ◽  
Andrew McCabe ◽  
Courtney Beverine ◽  
...  
2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0014
Author(s):  
Joseph J. Janosky ◽  
Brandon Schneider ◽  
Daphne Ling ◽  
James Russomano ◽  
Naomi Roselaar ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries are among the most common and devastating sports-related knee injuries. Neuromuscular training (NMT) has demonstrated efficacy as a preventive intervention for ACL injury and has been associated with improvements in measures of sports performance, but the specific physiologic mechanisms that serve as protective factors and contribute to improved performance haven not been well-defined. Hypothesis/Purpose: The purpose of this study is to investigate the association between NMT and biomechanical efficiency among high school athletes. We hypothesized that the performance of NMT is associated with improved biomechanical efficiency during the performance of fundamental movements and agility tests when compared to a group of untrained control subjects. Methods: Eight high school soccer and basketball teams (111 athletes, 53.1% male, mean age 15.6 years) were recruited and assigned to either an intervention or control group. The intervention group performed NMT as part of their warm-up prior to each practice and competition for 12 weeks. NMT was administered by experienced sports medicine clinicians who provided exercise instruction, technique cues, and performance feedback throughout each training session. The control group performed their customary warm-up under the direction of the team’s coaches. Biomechanical efficiency was assessed through performance of static and dynamic tests using an FDA-approved wireless sensor system. Agility was assessed using a timed three-cone agility test. All tests were administered immediately prior to and following each competitive sports season. Results: Matched pre-/post-season data was collected from 74 athletes (67%). Significant improvements [point estimate (95% CI) p-value] were observed in the intervention group for left lower extremity [0.25 (0.06,0.45) p = 0.01] and right lower extremity [0.21 (0.05,0.37) p = 0.01] loading/landing speed ratios during a single leg hop test, left lower extremity [-136.34 (-225.74,-46.95) p = 0.003] and right lower extremity [-110 (-211.36,-8.64) p = 0.03] ground reaction force, left lower extremity [-1.03, (-.189,-0.18) p = 0.02] and right lower extremity [-0.94 (-1.73,-0.14) p = 0.02] initial peak acceleration, and cadence [-12.12 (-21.60,-2.65) p = 0.01] during a straight-line running acceleration/deceleration test, and time [0.51 (0.24,0.78) p = 0.0003] during a three-cone agility test. Conclusion: Results demonstrate that season-long, sport-specific, age-appropriate NMT administered by sports medicine clinicians can significantly improve biomechanical efficiency during the performance of fundamental movements and agility tests by high school athletes. To achieve similar results, sports coaches should be trained to provide exercise instruction, technique cues, and performance feedback when administering NMT in real-world settings. [Table: see text][Table: see text]


2017 ◽  
Vol 45 (12) ◽  
pp. 2706-2712 ◽  
Author(s):  
Timothy A. McGuine ◽  
Eric G. Post ◽  
Scott J. Hetzel ◽  
M. Alison Brooks ◽  
Stephanie Trigsted ◽  
...  

Background: Sport specialization is associated with an increased risk of musculoskeletal lower extremity injuries (LEIs) in adolescent athletes presenting in clinical settings. However, sport specialization and the incidence of LEIs have not been investigated prospectively in a large population of adolescent athletes. Purpose: To determine if sport specialization was associated with an increased risk of LEIs in high school athletes. Study Design: Cohort study; Level of evidence, 2. Methods: Participants (interscholastic athletes in grades 9-12) were recruited from 29 Wisconsin high schools during the 2015-2016 school year. Participants completed a questionnaire identifying their sport participation and history of LEIs. Sport specialization of low, moderate, or high was determined using a previously published 3-point scale. Athletic trainers reported all LEIs that occurred during the school year. Analyses included group proportions, odds ratios (ORs) and 95% CIs, and days lost due to injury (median and interquartile range [IQR]). Multivariate Cox proportional hazard ratios (HRs) with 95% CIs were calculated to investigate the association between the incidence of LEIs and sport specialization level. Results: A total of 1544 participants (50.5% female; mean age, 16.1 ± 1.1 years) enrolled in the study, competed in 2843 athletic seasons, and participated in 167,349 athlete-exposures. Sport specialization was classified as low (59.5%), moderate (27.1%), or high (13.4%). Two hundred thirty-five participants (15.2%) sustained a total of 276 LEIs that caused them to miss a median of 7.0 days (IQR, 2.0-22.8). Injuries occurred most often to the ankle (34.4%), knee (25.0%), and upper leg (12.7%) and included ligament sprains (40.9%), muscle/tendon strains (25.4%), and tendinitis/tenosynovitis (19.6%). The incidence of LEIs for moderate participants was higher than for low participants (HR, 1.51 [95% CI, 1.04-2.20]; P = .03). The incidence of LEIs for high participants was higher than for low participants (HR, 1.85 [95% CI, 1.12-3.06]; P = .02). Conclusion: Athletes with moderate or high sport specialization were more likely to sustain an LEI than athletes with low specialization. Sports medicine providers need to educate coaches, parents, and interscholastic athletes regarding the increased risk of LEIs for athletes who specialize in a single sport.


2017 ◽  
Vol 9 (6) ◽  
pp. 518-523 ◽  
Author(s):  
Eric G. Post ◽  
David R. Bell ◽  
Stephanie M. Trigsted ◽  
Adam Y. Pfaller ◽  
Scott J. Hetzel ◽  
...  

Background: High school athletes are increasingly encouraged to participate in 1 sport year-round to increase their sport skills. However, no study has examined the association of competition volume, club sport participation, and sport specialization with sex and lower extremity injury (LEI) in a large sample of high school athletes. Hypothesis: Increased competition volume, participating on a club team outside of school sports, and high levels of specialization will all be associated with a history of LEI. Girls will be more likely to engage in higher competition volume, participate on a club team, and be classified as highly specialized. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: High school athletes completed a questionnaire prior to the start of their competitive season regarding their sport participation and previous injury history. Multivariable logistic regression analyses were used to investigate associations of competition volume, club sport participation, and sport specialization with history of LEI, adjusting for sex. Results: A cohort of 1544 high school athletes (780 girls; grades 9-12) from 29 high schools completed the questionnaire. Girls were more likely to participate at high competition volume (23.2% vs 11.0%, χ2 = 84.7, P < 0.001), participate on a club team (61.2% vs 37.2%, χ2 = 88.3, P < 0.001), and be highly specialized (16.4% vs 10.4%, χ2 = 19.7, P < 0.001). Athletes with high competition volume, who participated in a club sport, or who were highly specialized had greater odds of reporting a previous LEI than those with low competition volume (odds ratio [OR], 2.08; 95% CI, 1.55-2.80; P < 0.001), no club sport participation (OR, 1.50; 95% CI, 1.20-1.88; P < 0.001), or low specialization (OR, 2.58; 95% CI, 1.88-3.54; P < 0.001), even after adjusting for sex. Conclusion: Participating in high sport volume, on a club team, or being highly specialized was associated with history of LEI. Girls were more likely to participate at high volumes, be active on club teams, or be highly specialized, potentially placing them at increased risk of injury. Clinical Relevance: Youth athletes, parents, and clinicians should be aware of the potential risks of intense, year-round participation in organized sports.


2005 ◽  
Vol 161 (6) ◽  
pp. 511-519 ◽  
Author(s):  
J. Yang ◽  
S. W. Marshall ◽  
J. M. Bowling ◽  
C. W. Runyan ◽  
F. O. Mueller ◽  
...  

2017 ◽  
Vol 9 (3) ◽  
pp. 238-246 ◽  
Author(s):  
Kyle Nagle ◽  
Bernadette Johnson ◽  
Lina Brou ◽  
Tyler Landman ◽  
Ada Sochanska ◽  
...  

Background: Laboratory-based experiments demonstrate that fatigue may contribute to lower extremity injury (LEI). Few studies have examined the timing of LEIs during competition and practice, specifically in high school athletes across multiple sports, to consider the possible relationship between fatigue and LEIs during sport events. Hypothesis: The purpose of this study was to describe the timing of LEIs in high school athletes within games and practices across multiple sports, with a hypothesis that more and severe injuries occur later in games and practices. Study Design: Descriptive epidemiologic study. Level of Evidence: Level 4. Methods: Using the National High School RIO (Reporting Information Online) sport injury surveillance system, LEI severity and time of occurrence data during practice and competition were extracted for 9 high school sports. Results: During the school years 2005-2006 through 2013-2014, 16,967,702 athlete exposures and 19,676 total LEIs were examined. In all sports surveyed, there was a higher LEI rate, relative risk for LEI, and LEI requiring surgery during competition than practice. During practice, the majority of LEIs occurred over an hour into practice in all sports. In quarter-based competition, more LEIs occurred in the second (31% to 32%) and third quarters (30% to 35%) than in the first (11% to 15%) and fourth quarters (22% to 26%). In games with halves, the majority (53% to 66%) of LEIs occurred in the second half. The greater severity LEIs tended to occur earlier in games. Conclusion: Fatigue may play a role in the predominance of injuries in the second half of games, though various factors may be involved. Greater severity of injuries earlier in games may be because of higher energy injuries when athletes are not fatigued. Clinical Relevance: These findings can help prepare sports medicine personnel and guide further related research to prevent LEIs.


2016 ◽  
Vol 26 (6) ◽  
pp. 435-444 ◽  
Author(s):  
James A. Onate ◽  
Joshua S. Everhart ◽  
Daniel R. Clifton ◽  
Thomas M. Best ◽  
James R. Borchers ◽  
...  

2017 ◽  
Vol 52 (11) ◽  
pp. 1028-1034 ◽  
Author(s):  
Robert C. Lynall ◽  
Timothy C. Mauntel ◽  
Ryan T. Pohlig ◽  
Zachary Y. Kerr ◽  
Thomas P. Dompier ◽  
...  

Context:  Although an association between concussion and musculoskeletal injury has been described in collegiate and professional athletes, no researchers have investigated an association in younger athletes. Objective:  To determine if concussion in high school athletes increased the risk for lower extremity musculoskeletal injury after return to activity. Design:  Observational cohort study. Setting:  One hundred ninety-six high schools across 26 states. Patients or Other Participants:  We used data from the National Athletic Treatment, Injury and Outcomes Network surveillance system. Athletic trainers provided information about sport-related concussions and musculoskeletal injuries in athletes in 27 sports, along with missed activity time due to these injuries. Main Outcome Measure(s):  Three general estimating equations were modeled to predict the odds of sustaining (1) any lower extremity injury, (2) a time-loss lower extremity injury, or (3) a non–time-loss lower extremity injury after concussion. Predictors were the total number of previous injuries, number of previous concussions, number of previous lower extremity injuries, number of previous upper extremity injuries, and sport contact classification. Results:  The initial dataset contained data from 18 216 athletes (females = 39%, n = 6887) and 46 217 injuries. Lower extremity injuries accounted for most injuries (56.3%), and concussions for 4.3% of total injuries. For every previous concussion, the odds of sustaining a subsequent time-loss lower extremity injury increased 34% (odds ratio [OR] = 1.34; 95% confidence interval [CI] = 1.13, 1.60). The number of previous concussions had no effect on the odds of sustaining any subsequent lower extremity injury (OR = 0.97; 95% CI = 0.89, 1.05) or a non–time-loss injury (OR = 1.01; 95% CI = 0.92, 1.10). Conclusions:  Among high school athletes, concussion increased the odds of sustaining subsequent time-loss lower extremity injuries but not non–time-loss injuries. By definition, time-loss injuries may be considered more severe than non–time-loss injuries. The exact mechanism underlying the increased risk of lower extremity injury after concussion remains elusive and should be further explored in future research.


2017 ◽  
Vol 5 (7_suppl6) ◽  
pp. 2325967117S0028
Author(s):  
Timothy A. McGuine ◽  
David Bell ◽  
Margaret Alison Brooks ◽  
Scott Hetzel ◽  
Adam Pfaller ◽  
...  

2020 ◽  
Vol 8 (7_suppl6) ◽  
pp. 2325967120S0039
Author(s):  
Adam Lutz ◽  
Charles Thigpen ◽  
R. Gil Gilliland ◽  
John Thorpe ◽  
Michael Kissenberth ◽  
...  

Objectives: Previous research indicates that concussion increases the risk of lower extremity injuries (LE) after return to sport. However, no study has examined the risk of precedent lower extremity injuries and their relationship to the development of a sport related concussion (SRC). To determine if the risk of combined injuries (LE injury-SRC) is elevated in high school athletes accounting for athlete sport and gender. Methods: 33,386 high school athletes were monitored over 4 seasons. 4223 LE injuries and 1132 concussions were reported. Injured athletes were identified by their school athletic trainer (AT) time-loss injury during a team-sponsored practice or game. ATs documented the date, mechanism, and sport of injury. Injured athletes were referred to a board-certified sports medicine physician for diagnoses and follow up care. Cumulative injury rates were calculated with 95% confidence intervals. Rate ratios were used to compare frequency of SRC after RTS following a LE injury. Comparisons were made overall cohort between those participating athletes with and without isolated and combined injuries as well as by gender. (α=0.05). Results: A cumulative incidence for athletes sustaining an isolated SRC was 2.3/100 athletes (95% CI= 2.1-2.5) and for isolated LE injury was 11.5/100 (95% CI=11.2-11.9) athletes. Athletes presenting with a LE injury had an increased risk (RR= 4.7; 95% CI = 4.2-5.2) of sustaining a subsequent SRC within 1 year when compared to athletes that did not suffer precedent LE injuries. Male athletes presenting with a LE injury had an increased risk (RR= 4.9; 95% CI = 4.2-5.7) of sustaining a subsequent SRC within 1 year when compared to male athletes that did not suffer precedent LE injuries. Female athletes presenting with a LE injury had an increased risk (RR= 4.4; 95% CI = 3.6-5.2) of sustaining a subsequent SRC within 1 year when compared to female athletes that did not suffer precedent LE injuries. In football, presenting with a LE injury had an increased risk (RR= 5.8; 95% CI = 4.5-7.4) of sustaining a subsequent SRC within 1 year when compared to football athletes that did not suffer precedent LE injuries. Conclusion: Our results are the first to show that high school athletes who suffer a time-loss LE injury are at 4.4-5.8 times increased risk to suffer a sports related concussion within the next year. Additional studies are warranted to confirm these findings.


Sign in / Sign up

Export Citation Format

Share Document