Assessment of fluid responsiveness using inferior vena cava collapsibility index in hypovolemic patients using ultrasound in the emergency department

2019 ◽  
Vol 11 (1) ◽  
pp. 50-53
Author(s):  
Manu Mathew Lal ◽  
◽  
Deepali Rajpal ◽  
Manhar Shah ◽  
Utkarsh Khandelwal ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ahmed Ibrahim Nagi ◽  
Azza Mohamed Shafik ◽  
Amr Mohamed Abdel Fatah ◽  
Wessam Zaher Selima ◽  
Amira Fathy Hefny

Abstract Background Assessing fluid responsiveness is the key to successful resuscitation of critically-ill sepsis patients. The use of IVC variation is favored among the dynamic methods of fluid responsiveness assessment in the ICU because it is non-invasive and inexpensive; moreover, it does not demand a high level of training. The aim of this study is to determine the value of the IVC respiratory variability for predicting fluid responsiveness in spontaneously breathing sepsis patients with acute circulatory failure. Results In this prospective observational study, fifty-eight spontaneously breathing sepsis patients admitted in the ICU were enrolled after the approval of the departmental Research Ethical Committee, and the informed written consent had been taken from the patients. Ultrasonographic and echocardiographic parameters were measured “IVC parameters and stroke volume (SV)” with calculation of the inferior vena cava collapsibility index (IVCCI) and cardiac output. These values were obtained before (baseline) and after volume expansion with a fluid bolus. The study showed that twenty-nine patients (50%) were considered to be responders, with an increase in CO by 10% or more after fluid challenge. There was a significant difference between responders and non-responders in baseline IVCCI (p value < 0.001). There were no significant differences between responders and non-responders in terms of demographic and baseline clinical characteristics. Also, there was statistically significantly larger maximum (IVC max) and minimum (IVC min) inferior vena cava diameters before volume expansion in non-responders than in responders with p value 0.037 and 0.001 respectively. The suggested cut off value regarding baseline IVCCI to predict response to fluid infusion is 0.32 with a high chance of response above this figure (a sensitivity of 72.41% and a specificity of 82.76%). Conclusions Inferior vena cava collapsibility index assessment can be a sensitive and a good predictor of fluid responsiveness, being based on a safe and a non-invasive technique compared to other methods such as central venous pressure (CVP) measurement and pulmonary artery catheter insertion.


2020 ◽  
Vol 5 (1) ◽  

Fluid therapy is an essential component part management of critically ill patients. Proper estimation of the amount of needed fluids is of great importance due to the well-established adverse effects of marked negative and positive fluids balance. Central venous pressure has been widely used by ICU physicians for volume status assessment. Several methods have been postulated for volume status assessment, among which is the inferior vena cava collapsibility index. As the inferior vena cava is a thin-walled capacitance vessel that adjusts to the body’s volume status by changing its diameter depending on the total body fluid volume. Giving the fact that bed-side ultrasonographic measurement of inferior vena cava diameters is an available, non-invasive, reproducible and quiet easy-to-learn technique, it can provide a safe and quiet reliable replacement of central venous pressure measurement for assessment of volume status assessment. The aim of this study was to find statistical correlation between central venous pressure and caval index, as a step towards validating the above mentioned replacement. 86 critically ill patients from ICU population were enrolled. Simultaneous measurements of central venous pressure and inferior vena cava collapsibility index were observed and recorded on four sessions. Patients were also grouped based on their mode of ventilation and central venous pressure values in order to compare the strength of correlation between various populations. The results showed that Inferior vena cava collapsibility index has significant inverse correlation with CVP value (r= -85, p value ˂0.001 at 95% CI) and it better correlated with mean arterial blood pressure and lactate clearance as compared to central venous pressure. However it correlated better with CVP in spontaneously breathing patients (r= -0.86, p value ˂0.001) than in mechanically ventilated patients (r= -0.84, p value ˂0.001). Inferior vena cava collapsibility index has shown to correlate better with CVP value in lower values (˂ 10 cmH2O) (r= -0.8, p value ˂0.001) than in higher values (≥ 10 cmH2O) (r= -0.6, p value ˂0.001). In addition, an inferior vena caval collapsibility index cut-off value of 29% was shown to discriminate between CVP values ˂10 cmH2O and values ≥10 cmH2O with high Sensitivity (88.6%) and specificity (80.4%). In conclusion, inferior vena cava collapsibility index has a strong inverse relationship with central venous pressure which is more pronounced at low central venous pressure values. Point-of-care ultrasonographically-measured inferior vena cava collapsibility index is very likely to be a good alternative to central venous pressure measurement with a high degree of precision and reproducibility. However, Wide scale studies are needed to validate its use in different patient populations.


Sign in / Sign up

Export Citation Format

Share Document