STUDY ON FLEXURAL PERFORMANCE OF NOVEL SANDWICH PANEL WITH POROUS CONCRETE CORE

2021 ◽  
Vol 11 (2) ◽  
pp. 33
Author(s):  
R. SUDHIR KUMAR ◽  
J. ARUNRAJ CHRISTADOSS ◽  
◽  
Author(s):  
S. Aggarwal ◽  
G. Charters ◽  
D. Thacker

Certain radioisotopes (tritium, radium, cobalt, plutonium, and cesium) can penetrate porous concrete and contaminate the concrete well below the easily measured surface. Certain radioisotopes can penetrate concrete and contaminate the concrete well below the surface. The challenge is to determine the extent of the contamination problem and the magnitude of the problem in a real-time. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilizes some of the contaminants (like tritium) and oftentimes cross-contaminates the area around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated. The goal is to avoid those field activities that could cause this type of release. The concrete profiling technology, TRUPROSM in conjunction with portable radiometric instrumentation produces a profile of radiological or chemical contamination through the material being studied. The data quality, quantity, and representativeness may be used to produce an activity profile from the hot spot surface into the material being sampled. This activity profile may then be expanded to ultimately characterize the facility and expedite waste segregation and facility closure at a reduced cost and risk. Performing a volumetric concrete or metal characterization safer and faster (without lab intervention) is the objective of this characterization technology. This way of determining contamination can save considerable time and money.


2019 ◽  
Vol 7 (12) ◽  
pp. 1295-1307
Author(s):  
Xizhi Wu ◽  
Xueyou Huang ◽  
Xianjun Li ◽  
Yiqiang Wu

Author(s):  
Akash B. Jadhav ◽  
Dattatray G. Kolhe ◽  
Dhanaji A. Hubale ◽  
Suraj D. Shinde
Keyword(s):  

2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


Author(s):  
Morihiro HARADA ◽  
Shigemitsu HATANAKA ◽  
Naoki MISHIMA ◽  
Shohei IIO

Sign in / Sign up

Export Citation Format

Share Document