scholarly journals Automated Brain Tumor Detection in MRI Images Using Efficient Deep Learning Methods

Brain tumor is an unusual intensification of cells inside the skull. The brain MRI scanned images is segmented to extract brain tumor to analyze type and depth of tumor. In order to reduce the time consumption of brain tumor extraction, an automatic method for detection of brain tumor is highly recommended. Deep machine learning methods are used for automatic detection of the brain tumor in soft tissues at an early stage which involves the following stages namely: image pre-processing, clustering and optimization. This paper addresses previously adduced pre-processing (Skull stripping, Contrast stretching, clustering (k-Means, Fuzzy c-means) and optimization (Cuckoo search optimization, Artificial Bee Colony optimization) strategies for abnormal brain tumor detection from MRI brain images. Performance evaluation is done based on computational time of clustering output and optimization algorithms are analyzed in terms of sensitivity, specificity, and accuracy

Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2021 ◽  
Vol 10 (4) ◽  
pp. 3191-3195
Author(s):  
V Kakulapati

Tumor detection from Brain MRI images Abstract: Detecting tumors in the human brain has become the most challenging medical science issue. Recognition of tumors in MRIs is vital as it offers the aberrant relevant data for therapeutic interventions. MRI includes details on malignant tissue. An abnormal tissue growing and multiplying in the brain is a brain tumor. Physical examination is the standard approach for brain tumor identification, which takes much time and is not accurate every time. So, automated brain tumor identification methods are establishing to save time. Image segmentation utilizes to detect the brain's abnormal portion, which gives the tumor's location. This work uses the UNETS with VGG16 weights model to see and segment tumors from the rest of the brain tissue. The accurate detection of the tumors helps reduce the delay between diagnostic testing and therapy. Therefore, there is a significant demand for computer algorithms to be precise, speedy, time-efficient, and dependable. The technology described relates to detecting and analyzing brain cancers automatically via U-Net and the VGG16 CNN.


2020 ◽  
Vol 37 (5) ◽  
pp. 865-871
Author(s):  
Putta Rama Krishnaveni ◽  
Gattim Naveen Kishore

In view of insights of the Central Brain Tumor Registry of the United States (CBTRUS), brain tumor is one of the main sources of disease related deaths in the World. It is the subsequent reason for tumor related deaths in adults under the age 20-39. Magnetic Resonance Imaging (MRI) is assuming a significant job in the examination of neuroscience for contemplating brain images. The investigation of brain MRI Images is useful in brain tumor analysis process. Features will be extricated and selected from the segmented pictures and afterward grouped by utilizing the classification procedures to analyze whether the patient is ordinary (having no tumor) or irregular (having tumor). One of the most dangerous cancers is brain tumor or cancer which affects the human body's main nervous system. Infection that can affect is very sensitive to the brain. Two types of brain tumors are present. The tumor may be categorized as benign and malignant. The benign tumor represents a change in the shape and structure of the cells, but cannot contaminate or spread to other cells in the brain. The malignant tumor can spread and grow if not carefully treated and removed. The detection of brain tumors is a difficult and sensitive task involving the classifier's experience. In the proposed work a Group based Classifier for Brain Tumor Recognition (GbCBTD) is introduced for the efficient segmentation of MRI images and for identification of tumor. The use of Convolutional Neural Network (CNN) system to classify the brain tumor type is presented in this work. Relevant features are extracted from images and by using CNN with machine learning technique, tumor can be recognized. CNN can reduce the cost and increase the performance of brain tumor detection. The proposed work is compared to the traditional methods and the results show that the proposed method is effective in detecting tumors.


Author(s):  
V. Supraja ◽  
Kuna Haritha ◽  
Gunjalli Mounika ◽  
Chintha Manideepika ◽  
Kandikeri Sai Jeevani

In the field of medical image processing, detection of brain tumor from magnetic resonance image (MRI) brain scan has become one of the most active research. Detection of the tumor is the main objective of the system. Detection plays a critical role in biomedical imaging. In this paper, MRI brain image is used to tumor detection process. This system includes test the brain image process, image filtering, skull stripping, segmentation, morphological operation, calculation of the tumor area and determination of the tumor location. In this system, morphological operation of erosion algorithm is applied to detect the tumor. The detailed procedures are implemented using MATLAB. The proposed method extracts the tumor region accurately from the MRI brain image. The experimental results indicate that the proposed method efficiently detected the tumor region from the brain image. And then, the equation of the tumor region in this system is effectively applied in any shape of the tumor region.


Author(s):  
G Aswani ◽  
I N V V A M S N Murthy ◽  
K Durga Devi ◽  
N Veerababu ◽  
M L N Swamy

Brain Tumor detection and removal is one medical issue that still remains challenging in the field of biomedicine. MRI is most often used for the detection of tumors, lesions, and other abnormalities in soft tissues, such as the brain. This project is about detecting Brain tumors from MRI images using an interface of GUI in Mat lab. Using the GUI, this program can use various combinations of segmentation, filters, and other image processing algorithms to realize the simplest results. Here We start the process by filtering the image with the help of Prewitt horizontal edge- emphasizing filter. The next step for detecting tumors is "watershed pixels." The most important part of this project is that all the Mat lab programs work with GUI “Matlab guide”


Author(s):  
Aaishwarya Sanjay Bajaj ◽  
Usha Chouhan

Background: This paper endeavors to identify an expedient approach for the detection of the brain tumor in MRI images. The detection of tumor is based on i) review of the machine learning approach for the identification of brain tumor and ii) review of a suitable approach for brain tumor detection. Discussion: This review focuses on different imaging techniques such as X-rays, PET, CT- Scan, and MRI. This survey identifies a different approach with better accuracy for tumor detection. This further includes the image processing method. In most applications, machine learning shows better performance than manual segmentation of the brain tumors from MRI images as it is a difficult and time-consuming task. For fast and better computational results, radiology used a different approach with MRI, CT-scan, X-ray, and PET. Furthermore, summarizing the literature, this paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. Conclusion: The problem faced by the researchers during brain tumor detection techniques and machine learning applications for clinical settings have also been discussed.


Author(s):  
Shoaib Amin Banday ◽  
Mohammad Khalid Pandit

Introduction: Brain tumor is among the major causes of morbidity and mortality rates worldwide. According to National Brain Tumor Foundation (NBTS), the death rate has nearly increased by as much as 300% over last couple of decades. Tumors can be categorized as benign (non-cancerous) and malignant (cancerous). The type of the brain tumor significantly depends on various factors like the site of its occurrence, its shape, the age of the subject etc. On the other hand, Computer Aided Detection (CAD) has been improving significantly in recent times. The concept, design and implementation of these systems ascend from fairly simple ones to computationally intense ones. For efficient and effective diagnosis and treatment plans in brain tumor studies, it is imperative that an abnormality is detected at an early stage as it provides a little more time for medical professionals to respond. The early detection of diseases has predominantly been possible because of medical imaging techniques developed from past many decades like CT, MRI, PET, SPECT, FMRI etc. The detection of brain tumors however, has always been a challenging task because of the complex structure of the brain, diverse tumor sizes and locations in the brain. Method: This paper proposes an algorithm that can detect the brain tumors in the presence of the Radio-Frequency (RF) inhomoginiety. The algorithm utilizes the Mid Sagittal Plane as a landmark point across which the asymmetry between the two brain hemispheres is estimated using various intensity and texture based parameters. Result: The results show the efficacy of the proposed method for the detection of the brain tumors with an acceptable detection rate. Conclusion: In this paper, we have calculated three textural features from the two hemispheres of the brain viz: Contrast (CON), Entropy (ENT) and Homogeneity (HOM) and three parameters viz: Root Mean Square Error (RMSE), Correlation Co-efficient (CC), and Integral of Absolute Difference (IAD) from the intensity distribution profiles of the two brain hemispheres to predict any presence of the pathology. First a Mid Sagittal Plane (MSP) is obtained on the Magnetic Resonance Images that virtually divides brain into two bilaterally symmetric hemispheres. The block wise texture asymmetry is estimated for these hemispheres using the above 6 parameters.


Author(s):  
Muhammad Irfan Sharif ◽  
Jian Ping Li ◽  
Javeria Amin ◽  
Abida Sharif

AbstractBrain tumor is a group of anomalous cells. The brain is enclosed in a more rigid skull. The abnormal cell grows and initiates a tumor. Detection of tumor is a complicated task due to irregular tumor shape. The proposed technique contains four phases, which are lesion enhancement, feature extraction and selection for classification, localization, and segmentation. The magnetic resonance imaging (MRI) images are noisy due to certain factors, such as image acquisition, and fluctuation in magnetic field coil. Therefore, a homomorphic wavelet filer is used for noise reduction. Later, extracted features from inceptionv3 pre-trained model and informative features are selected using a non-dominated sorted genetic algorithm (NSGA). The optimized features are forwarded for classification after which tumor slices are passed to YOLOv2-inceptionv3 model designed for the localization of tumor region such that features are extracted from depth-concatenation (mixed-4) layer of inceptionv3 model and supplied to YOLOv2. The localized images are passed toMcCulloch'sKapur entropy method to segment actual tumor region. Finally, the proposed technique is validated on three benchmark databases BRATS 2018, BRATS 2019, and BRATS 2020 for tumor detection. The proposed method achieved greater than 0.90 prediction scores in localization, segmentation and classification of brain lesions. Moreover, classification and segmentation outcomes are superior as compared to existing methods.


2020 ◽  
Vol 10 (21) ◽  
pp. 7790
Author(s):  
Duc-Ky Ngo ◽  
Minh-Trieu Tran ◽  
Soo-Hyung Kim ◽  
Hyung-Jeong Yang ◽  
Guee-Sang Lee

Segmenting brain tumors accurately and reliably is an essential part of cancer diagnosis and treatment planning. Brain tumor segmentation of glioma patients is a challenging task because of the wide variety of tumor sizes, shapes, positions, scanning modalities, and scanner’s acquisition protocols. Many convolutional neural network (CNN) based methods have been proposed to solve the problem of brain tumor segmentation and achieved great success. However, most previous studies do not fully take into account multiscale tumors and often fail to segment small tumors, which may have a significant impact on finding early-stage cancers. This paper deals with the brain tumor segmentation of any sizes, but specially focuses on accurately identifying small tumors, thereby increasing the performance of the brain tumor segmentation of overall sizes. Instead of using heavyweight networks with multi-resolution or multiple kernel sizes, we propose a novel approach for better segmentation of small tumors by dilated convolution and multi-task learning. Dilated convolution is used for multiscale feature extraction, however it does not work well with very small tumor segmentation. For dealing with small-sized tumors, we try multi-task learning, where an auxiliary task of feature reconstruction is used to retain the features of small tumors. The experiment shows the effectiveness of segmenting small tumors with the proposed method. This paper contributes to the detection and segmentation of small tumors, which have seldom been considered before and the new development of hierarchical analysis using multi-task learning.


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


Sign in / Sign up

Export Citation Format

Share Document