EFFECT OF MANUFACTURING PROCESSES ON CREEP MODULUS, STRAIN RATE AND RESIDUAL STRESS OF POLYMERS

2018 ◽  
Vol 5 (4) ◽  
pp. 47
Author(s):  
ARORA SARANSH ◽  
SAINI GAURAV ◽  
SINGHAL LOKESH ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  
2018 ◽  
Vol 53 (5) ◽  
pp. 364-375
Author(s):  
Florian Vollert ◽  
Marco Lüchinger ◽  
Simone Schuster ◽  
Nicola Simon ◽  
Jens Gibmeier ◽  
...  

Lightweight constructions are used to fulfil the ever-increasing demands regarding fuel efficiency and carbon dioxide emission in transportation industries. In order to reduce weight, technical components made of solid materials are often replaced by tubular structures. Under service conditions, the components are frequently exposed to cyclic loads. Hence, residual stresses that are induced by manufacturing processes can have a significant impact on service life. In this work, the focus is on tube manufacturing processes, precisely cold tube sinking and fixed plug drawing. Both processes induce characteristic residual stress states, which are important to assess the mechanical integrity and load-carrying capacity of tubular components during service. The aim of this article is to examine the residual stress depth distribution for medium-carbon steel tubes manufactured by cold tube sinking and fixed plug drawing. The residual stresses are measured by means of the Sachs method and the hole-drilling method, respectively. The measured results are compared to finite element simulations of the tube drawing process. It is shown that the residual stress obtained with the different experimental methods and the numerical simulations are consistent. Furthermore, it is shown that the residual stresses can be significantly reduced when a plug is used in the drawing process.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 894
Author(s):  
Trunal Bhujangrao ◽  
Catherine Froustey ◽  
Edurne Iriondo ◽  
Fernando Veiga ◽  
Philippe Darnis ◽  
...  

Materials undergo various loading conditions during different manufacturing processes, including varying strain rates and temperatures. Research has shown that the deformation of metals and alloys during manufacturing processes such as metal forming, machining, and friction stir welding (FSW), can reach a strain rate ranging from 10−1 to 106 s−1. Hence, studying the flow behavior of materials at different strain rates is important to understanding the material response during manufacturing processes. Experimental data for a low strain rate of <101 s−1 and a high strain rate of >103 s−1 are readily available by using traditional testing devices such as a servo-hydraulic testing machine and the split Hopkinson pressure bar method, respectively. However, for the intermediate strain rate (101 to 103 s−1), very few testing devices are available. Testing the intermediate strain rate requires a demanding test regime, in which researchers have expanded the use of special instruments. This review paper describes the development and evolution of the existing intermediate strain rate testing devices. They are divided based on the loading mechanism; it includes the high-speed servo-hydraulic testing machines, hybrid testing apparatus, the drop tower, and the flywheel machine. A general description of the testing device is systematically reviewed; which includes the working principles, some critical theories, technological innovation in load measurement techniques, components of the device, basic technical assumption, and measuring techniques. In addition, some research direction on future implementation and development of an intermediate strain rate apparatus is also discussed in detail.


2015 ◽  
Vol 812 ◽  
pp. 321-326 ◽  
Author(s):  
A. Filep ◽  
Márton Benke ◽  
Valéria Mertinger ◽  
Gábor Buza

Technological residual stresses have great importance in the manufacturing processes and the lifetime of components. The residual stresses formed by quenching can be very diverse because of its multiple sources. Alternative quenching processes such as laser hardening have a great potential for different applications. The direction of heat transfer during laser hardening is the opposite compared to conventional quenching. This further increases the complexity of the developed stress state. The residual stress profile and the microstructure formed by laser hardening treatment are investigated in the present manuscript.


Author(s):  
Suyambazhahan Sivalingam ◽  
Sunny Narayan ◽  
Sakthivel Rajamohan ◽  
Ivan Grujic ◽  
Nadica Stojanovic

The additive manufacturing (AM) of products involves various processes, such as raising the temperature of a work-piece (part) and substrate to the melting point and subsequent solidification, using a movable source of heat. The work piece is subjected to repeated cycles of heating and cooling. The main objective of this work was to present an overview of the various methods used for prediction of the residual stresses and how their contributions can be used to improve current additive manufacturing methods. These novel methods of manufacturing have several merits, compared to conventional methods. Some of these merits include the lower costs, higher precision and accuracy of manufacturing, faster processing time and more eco-friendly approaches to processes involved.


1999 ◽  
Vol 33 (1-4) ◽  
pp. 151-171 ◽  
Author(s):  
A. N. Ezeilo ◽  
G. A. Webster

The increasing awareness amongst engineers and designers, of the significance of residual stresses in influencing the useful lifetimes of engineering components, has resulted in more demanding expectations being placed on the methods used to obtain these stresses. The neutron diffraction technique is emerging as the most attractive measuring method as the residual stresses can usually be obtained non-destructively to depths of up to 40 mm in some common engineering materials. Although it is a relatively new technique it has been used to measure the residual stresses in a range of engineering materials introduced by a wide variety of manufacturing processes such as welding, quenching, machining, shot peening, cold hole expansion and autofrettage.In this paper the neutron diffraction technique for non-destructive residual stress measurements will be described including methods used to validate the measurements. Precautions that should be taken in order to obtain reliable measurements are outlined. Procedures being investigated in order to produce a code of practice will be presented. A representative selection of stress distributions developed by a range of manufacturing processes is examined. Some comparisons are made with strain gauge, X-ray and numerical predictions. It is shown how the results can be of benefit in engineering stress analysis.


2020 ◽  
Vol 35 (15) ◽  
pp. 1781-1788
Author(s):  
Shengyong Zhang ◽  
Yan Ran ◽  
Adrian Murphy ◽  
Genbao Zhang ◽  
Wen Wang

Sign in / Sign up

Export Citation Format

Share Document