scholarly journals Determination of selected engineering properties of Moringa oleifera seed

Food Research ◽  
2018 ◽  
Vol 3 (2) ◽  
pp. 96-101 ◽  
Author(s):  
M.S. Abubakar ◽  
I.A. Benjamin
2016 ◽  
Vol 23 (7) ◽  
pp. 645-649 ◽  
Author(s):  
José H.E.S. Freitas ◽  
Keissy V. de Santana ◽  
Pollyanna M. da Silva ◽  
Maiara C. de Moura ◽  
Luana C.B.B. Coelho ◽  
...  

2017 ◽  
Vol 329 ◽  
pp. 102-109 ◽  
Author(s):  
William K. Garde ◽  
Steven G. Buchberger ◽  
David Wendell ◽  
Margaret J. Kupferle

2020 ◽  
Vol 15 (3) ◽  
pp. 15-23
Author(s):  
J.B. Hussein ◽  
J.O.Y. Ilesanmi ◽  
H.M Aliyu ◽  
V. Akogwu

The possible combination of cowpea with moringa seed flour for the production of nutrient dense moimoi (steamed cowpea paste) and akara (deep-fat fried balls) were investigated. Composite blends of cowpea and moringa seed flour in different proportions (98:2, 96:4 and 94:6) were used in moimoi and akara production while 100% cowpea flour served as control. The proximate and sensory analyses of the products were determined using standard methods. The results showed a positive influence in the proximate compositions of these products as the proportion of moringa seed flour substitution increased. The moimoi samples ranged between 10.77 – 26.92%, 18.27 – 21.16%, 8.12 – 10.72%, 1.80 – 2.19%, 0.76 – 0.84%, 44.07 – 53.99% and 269.87 – 335.18 Kcal/100g while akara samples ranged between 9.73 – 10.77%, 19.51 – 22.12%, 7.41 – 9.90%, 2.39 – 2.71%, 0.87 – 0.93%, 54.69 – 59.00% and 320.26 – 332.08 Kcal/100g respectively for moisture contents, protein contents, crude fats, ash, crude fibers, carbohydrates and energy values. The sensory evaluation results of these products favourably competed with the control except samples D (94:6) which showed a slight difference in all parameters tested. Thus, the substitution of cowpea with moringa seed flour up to 2% and 4% proportions are adequate to produce acceptable moimoi and akara, respectively.The possible combination of cowpea with moringa seed flour for the production of nutrient dense moimoi (steamed cowpea paste) and akara (deep-fat fried balls) were investigated. Composite blends of cowpea and moringa seed flour in different proportions (98:2, 96:4 and 94:6) were used in moimoi and akara production while 100% cowpea flour served as control. The proximate and sensory analyses of the products were determined using standard methods. The results showed a positive influence in the proximate compositions of these products as the proportion of moringa seed flour substitution increased. The moimoi samples ranged between 10.77 – 26.92%, 18.27 – 21.16%, 8.12 – 10.72%, 1.80 – 2.19%, 0.76 – 0.84%, 44.07 – 53.99% and 269.87 – 335.18 Kcal/100g while akara samples ranged between 9.73 – 10.77%, 19.51 – 22.12%, 7.41 – 9.90%, 2.39 – 2.71%, 0.87 – 0.93%, 54.69 – 59.00% and 320.26 – 332.08 Kcal/100g respectively for moisture contents, protein contents, crude fats, ash, crude fibers, carbohydrates and energy values. The sensory evaluation results of these products favourably competed with the control except samples D (94:6) which showed a slight difference in all parameters tested. Thus, the substitution of cowpea with moringa seed flour up to 2% and 4% proportions are adequate to produce acceptable moimoi and akara, respectively. Keywords: Moimoi, Akara, Cowpea flour, Moringa oleifera seed flour and Sensory properties: Moimoi, Akara, Cowpea flour, Moringa oleifera seed flour and Sensory properties


2021 ◽  
pp. 1-47
Author(s):  
Alessandra Marjorie de Oliveira ◽  
Márcia Maria dos Anjos Szczerepa ◽  
Maria Cristina Bronharo Tognim ◽  
Benício Alves de Abreu Filho ◽  
Lúcio Cardozo-Filho ◽  
...  

2008 ◽  
Vol 14 (S3) ◽  
pp. 19-22 ◽  
Author(s):  
H. Yurdakul ◽  
S. Turan

SiAlON ceramics have found applications in many different areas due to their excellent engineering properties such as high hardness, fracture toughness, good thermal shock and oxidation resistance. SiAlON exist mainly in two different polymorphs: a (MxSi12-(m+n)Al(m+n)OnN16-n; M: metal and rare earth cations, x≈0,35 and n≤1,35) and β (β-Si6-zAlzOzN8-z; 0≤z≤4). In general, stable alpha and beta phases separately as well as in combination of α and β are obtained by incorporation of metal and rare earth cations as sintering additives. The metal cations such as Li, Mg, Ca, Y, and most lanthanide cations with the exception of La, Ce, Pr and Eu are able to stabilise α-SiAlON structure. Ekstrom et al. 1991 found that cerium can not occupy interstitial sites in α-SiAlON structure due to the fact that ionic radius of Ce3+ (0.103 nm) is too large, whereas ionic radius of Ce4+ (0.080 nm) is too small to stabilise α-SiAlON structure. After this work, several studies carried out to incorporate cerium cations into α-SiAlON structure. It was shown that cerium cation alone can be incorporated into α-SiAlON if the samples are either fast cooled after sintering, or when the samples are spark plasma sintered. On the other hand, cerium can also be incorporated into the α-SiAlON structure when it is used as a sintering additive together with a smaller α-SiAlON stabiliser cation such as Yb or Ca. Similar results were observed in other multi-cation doped SiAlONS that non α-SiAlON stabiliser cations like Sr2+ (0.112 nm) and La3+ (0.106 nm) are able to stabilise α-SiAlON when used together with α-SiAlON stabiliser cations such as Ca or Yb. Although it was shown that cerium existed in mixed valance state at domain boundaries in Ce-doped and spark plasma sintered α-SiAlON, there is no work on the valance determination of cerium in sintered α-SiAlON which has no domain boundaries. Therefore, in this study; it was aimed to incorporate cerium into α-SiAlON structure by combining with Yb3+ and the determination of possible cerium valence states (Ce3+/Ce4+) in both α-SiAlON grains and secondary phases.


Sign in / Sign up

Export Citation Format

Share Document