EXPERIMENTAL AND NUMERICAL EVALUATION OF AN IN-FLIGHT ANGLE OF ATTACK MEASUREMENT SYSTEM FOR HIGH POWER MODEL ROCKETS

Author(s):  
Caio Dias Fernandes ◽  
Bruna Hartmann Coutinho ◽  
Bruno Hashinokuti Iwamoto ◽  
breno borges ◽  
Dimitri Zuave Costa da Silva ◽  
...  
Instruments ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 16 ◽  
Author(s):  
Ram Narayanan ◽  
Kyle Gallagher ◽  
Gregory Mazzaro ◽  
Anthony Martone ◽  
Kelly Sherbondy

Radio frequency (RF) circuit elements that are traditionally considered to be linear frequently exhibit nonlinear properties that affect the intended operation of many other RF systems. Devices such as RF connectors, antennas, attenuators, resistors, and dissimilar metal junctions generate nonlinear distortion that degrades primary RF system performance. The communications industry is greatly affected by these unintended and unexpected nonlinear distortions. The high transmit power and tight channel spacing of the communication channel makes communications very susceptible to nonlinear distortion. To minimize nonlinear distortion in RF systems, specialized circuits are required to measure the low level nonlinear distortions created from traditionally linear devices, i.e., connectors, cables, antennas, etc. Measuring the low-level nonlinear distortion is a difficult problem. The measurement system requires the use of high power probe signals and the capability to measure very weak nonlinear distortions. Measuring the weak nonlinear distortion becomes increasingly difficult in the presence of higher power probe signals, as the high power probe signal generates distortion products in the measurement system. This paper describes a circuit design architecture that achieves 175 dB of dynamic range which can be used to measure low level harmonic distortion from various passive RF circuit elements.


2013 ◽  
Vol 1 (3-4) ◽  
pp. 126-131
Author(s):  
Yanwen Xia ◽  
Yue Liang ◽  
Sen Li ◽  
Junpu Zhao ◽  
Zhitao Peng ◽  
...  

AbstractAn energy measurement system in a Large-aperture high power laser experiment platform is introduced. The entire measurement system includes five calorimeters, which carry out the energy measurement of the fundamental frequency before the frequency conversion unit, remaining fundamental frequency, remain second-harmonics, third harmonics, as well as the energy balance measurement after the frequency conversion unit. Combinational indirect calibration and direct calibration are employed to calibrate the sampling coefficients of the calorimeters. The analysis of the data showed that, regarding the energy balance coefficients, combinational calibration approach gives a higher precision, and leads to an energy balance with 1%; and regarding the energy sampling coefficients for the various wavelengths after the frequency conversion, the results from direct and combinational calibration are consistent. The uncertainties for all energy sampling coefficients are within 3%, which guarantees the reliability of the energy measurement for the laser facility.


Sign in / Sign up

Export Citation Format

Share Document