scholarly journals Population growth estimates of a threatened seabird indicate necessity for additional management following invasive predator eradications

2020 ◽  
Author(s):  
Johannes Fischer ◽  
GA Taylor ◽  
R Cole ◽  
I Debski ◽  
DP Armstrong ◽  
...  

© 2019 The Zoological Society of London The eradication of invasive predators from islands is a successful technique to safeguard seabird populations, but adequate post-eradication monitoring of native species is often lacking. The Whenua Hou Diving Petrel (Pelecanoides whenuahouensis; WHDP) is a recently-described and ‘Critically Endangered’ seabird, restricted to Codfish Island (Whenua Hou), New Zealand. Invasive predators, considered the major threat to WHDP, were eradicated on Codfish Island in 2000. However, estimates of WHDP population size and trends remain unknown, hindering assessments of the success of the eradications. We collated intermittent burrow counts (n = 20 seasons) conducted between 1978 and 2018. To estimate the population growth rate (λ) before and after predator eradications, we used log-linear models in a Bayesian hierarchical framework while retrospectively accounting for differences in detection probabilities among burrow counts, due to differences in effort, marking and timing. The number of WHDP burrows was estimated at 40 (36–46) in 1978 and 100 (97–104) in 2018. The pre-eradication λ was estimated at 1.023 (0.959–1.088), while the post-eradications λ was estimated at 1.017 (1.006–1.029). The WHDP population appears to be increasing, yet the rate of increase is low compared to other Procellariiformes following predator eradications. The comparatively low post-eradication λ, combined with an apparent lack of change between pre- and post-eradication λ, indicates that additional threats might be limiting WHDP population growth and that further conservation management is required. The continuation of affordable and simple, albeit imperfect, monitoring methods with retrospective corrections facilitated the assessment of invasive predator eradications outcomes and should guide future management decisions. An abstract in Te Reo Māori (the Māori language) can be found in Appendix S1.

2020 ◽  
Author(s):  
Johannes Fischer ◽  
GA Taylor ◽  
R Cole ◽  
I Debski ◽  
DP Armstrong ◽  
...  

© 2019 The Zoological Society of London The eradication of invasive predators from islands is a successful technique to safeguard seabird populations, but adequate post-eradication monitoring of native species is often lacking. The Whenua Hou Diving Petrel (Pelecanoides whenuahouensis; WHDP) is a recently-described and ‘Critically Endangered’ seabird, restricted to Codfish Island (Whenua Hou), New Zealand. Invasive predators, considered the major threat to WHDP, were eradicated on Codfish Island in 2000. However, estimates of WHDP population size and trends remain unknown, hindering assessments of the success of the eradications. We collated intermittent burrow counts (n = 20 seasons) conducted between 1978 and 2018. To estimate the population growth rate (λ) before and after predator eradications, we used log-linear models in a Bayesian hierarchical framework while retrospectively accounting for differences in detection probabilities among burrow counts, due to differences in effort, marking and timing. The number of WHDP burrows was estimated at 40 (36–46) in 1978 and 100 (97–104) in 2018. The pre-eradication λ was estimated at 1.023 (0.959–1.088), while the post-eradications λ was estimated at 1.017 (1.006–1.029). The WHDP population appears to be increasing, yet the rate of increase is low compared to other Procellariiformes following predator eradications. The comparatively low post-eradication λ, combined with an apparent lack of change between pre- and post-eradication λ, indicates that additional threats might be limiting WHDP population growth and that further conservation management is required. The continuation of affordable and simple, albeit imperfect, monitoring methods with retrospective corrections facilitated the assessment of invasive predator eradications outcomes and should guide future management decisions. An abstract in Te Reo Māori (the Māori language) can be found in Appendix S1.


2015 ◽  
Author(s):  
Jacob Andreas ◽  
Dan Klein
Keyword(s):  

1983 ◽  
Vol 15 (6) ◽  
pp. 801-813 ◽  
Author(s):  
B Fingleton

Log-linear models are an appropriate means of determining the magnitude and direction of interactions between categorical variables that in common with other statistical models assume independent observations. Spatial data are often dependent rather than independent and thus the analysis of spatial data by log-linear models may erroneously detect interactions between variables that are spurious and are the consequence of pairwise correlations between observations. A procedure is described in this paper to accommodate these effects that requires only very minimal assumptions about the nature of the autocorrelation process given systematic sampling at intersection points on a square lattice.


2008 ◽  
Vol 30 (1) ◽  
pp. 28-52 ◽  
Author(s):  
Dana Hamplova

In this article, educational homogamy among married and cohabiting couples in selected European countries is examined. Using data from two waves (2002 and 2004) of the European Social Survey, this article compares three cultural and institutional contexts that differ in terms of institutionalization of cohabitation. Evidence from log-linear models yields two main conclusions. First, as cohabitation becomes more common in society, marriage and cohabitation become more similar with respect to partner selection. Second, where married and unmarried unions differ in terms of educational homogamy, married couples have higher odds of overcoming educational barriers (i.e., intermarrying with other educational groups).


2017 ◽  
Vol 9 (4) ◽  
pp. 86 ◽  
Author(s):  
Cristina A. Gómez-Moya ◽  
Talita P. S. Lima ◽  
Elisângela G. F. Morais ◽  
Manoel G. C. Gondim Jr. ◽  
Gilberto J. De Moraes

The expansion of red palm mite (RPM), Raoiella indica (Acari: Tenuipalpidae) in Brazil could impact negatively the native plant species, especially of the family Arecaceae. To determine which species could be at risk, we investigated the development and reproductive potential of R. indica on 19 plant species including 13 native species to the Brazilian Amazon (12 Arecaceae and one Heliconiaceae), and six exotic species, four Arecaceae, a Musaceae and a Zingiberaceae. Values of the instantaneous rate of increase (ri) were initially estimated at 7, 14, 21 and 28 days after infestation of each species. Higher values of ri (> 0.05) were determined on the Arecaceae Adonidia merrillii, Astrocaryum jauari, Cocos nucifera, Bactris simplicifrons, Mauritia flexuosa, Phoenix dactylifera and Socratea exorrhiza, and on the Heliconiaceae Heliconia psittacorum Sassy; these were classified as “potential primary hosts”. Lower, but still positive values of ri (0-0.05) were determined on the Arecaceae Bactris maraja, Oenocarpus bacaba, Oenocarpus bataua and on the Musaceae Musa × paradisiaca (Prata variety); these were classified as “potential secondary hosts”. Negative values of ri were determined for the remaining plants, i.e., the Arecaceae Astrocaryum aculeatum, Attalea maripa, Bactris gasipaes, Elaeis guineensis, Euterpe oleracea, Euterpe precatoria, and the Zingiberaceae Alpinia rosea; these were considered “non-hosts”. Species with ri < 0.05 were considered not to be threatened by the RPM. Biological parameters of RPM were evaluated on the plant species with positive ri (except B. maraja) and two native species with negative ri (E. oleracea and E. precatoria). Mean developmental time ranged from 14.7 days on C. nucifera to 21.4 days on Musa × paradisiaca, showing a significant influence of the plant substrate. Immature viability, oviposition rate, net reproductive rate (R0) and intrinsic rate of increase (rm) were affected by the plant species.


Sign in / Sign up

Export Citation Format

Share Document