scholarly journals Allozyme and Other Aspects of Variation in the Genus Bulbinella in New Zealand

2021 ◽  
Author(s):  
◽  
Lesley Dawn Milicich

<p>This thesis examines some aspects of morphological, cytogenetic and allozyme variation in the six species of the genus Bulbinella in New Zealand. Because evidence was found suggesting that fragmentation and reduction of the habitat of some species of the study genus had occurred, aspects of the conservation status of Bulbinella were also investigated. Some of the morphological characters described and used by Moore (1964) to separate the species were employed in this study as well as other characters recorded by the author in actively glowing plants. Generally, the seven taxa could be successfully distinguished using selected morphological characters, although in some species or populations a range of morphological forms was observed. Increased human land use (mainly mining, farming and associated activities) has reduced some populations of Bulbinella to low numbers by destroying large areas of habitat. In some cases once vast areas of Bulbinella have been reduced to fragments or probably exterminated. The karyotypes of five of the seven taxa were determined and these were all consistent with published data. G-banding was achieved in only one slide from one plant. A total of four bands (restricted to two pairs of chromosomes) was observed in the entire chromosome complement of 14. Each band was located on a separate chromosome. Inflorescence material from 61 natural populations of Bulbinella in New Zealand was examined for enzyme activity using starch gel electrophoresis. Activity was detected for eight of a total of 43 enzyme stains. Three monomorphic and 11 polymorphic loci were resolved. While no completely fixed differences between all the taxa could be demonstrated, four almost fixed differences were found. In some instances where populations belonging to different species were not geographically separated by great distances (<50km) shared alleles between species were demonstrated, indicating that introgression had occurred and may still be taking place. Overall, the genetic distance (Nei 1978) within taxa was less than that between taxa. The dendrogram resulting from cluster analysis of Nei's unbiased genetic distances divided the genus into four groups, three of which corresponded to three currently recognised taxa. The other group contained the remaining four taxa. Although the component taxa of this cluster could be readily separated using morphological characters, they could not be distinguished using allozyme data. The endemic distribution of B. rossii (Campbell Island and Auckland Island Group) and fixed morphological differences justify its remaining a separate taxon. The formal raising of B. gibbsii var. gibbsii to a separate specific status is subject to the analysis of further samples of this taxon. B. angustifolia, B, talbotii, and B. gibbsii vat. balanifera also remain separate taxa, with B. gibbsii var. balanifera being raised to a separate specific status. B. modesta, which is genetically closely related to B. hookeri, becomes a sub-species of this taxon.</p>

2021 ◽  
Author(s):  
◽  
Lesley Dawn Milicich

<p>This thesis examines some aspects of morphological, cytogenetic and allozyme variation in the six species of the genus Bulbinella in New Zealand. Because evidence was found suggesting that fragmentation and reduction of the habitat of some species of the study genus had occurred, aspects of the conservation status of Bulbinella were also investigated. Some of the morphological characters described and used by Moore (1964) to separate the species were employed in this study as well as other characters recorded by the author in actively glowing plants. Generally, the seven taxa could be successfully distinguished using selected morphological characters, although in some species or populations a range of morphological forms was observed. Increased human land use (mainly mining, farming and associated activities) has reduced some populations of Bulbinella to low numbers by destroying large areas of habitat. In some cases once vast areas of Bulbinella have been reduced to fragments or probably exterminated. The karyotypes of five of the seven taxa were determined and these were all consistent with published data. G-banding was achieved in only one slide from one plant. A total of four bands (restricted to two pairs of chromosomes) was observed in the entire chromosome complement of 14. Each band was located on a separate chromosome. Inflorescence material from 61 natural populations of Bulbinella in New Zealand was examined for enzyme activity using starch gel electrophoresis. Activity was detected for eight of a total of 43 enzyme stains. Three monomorphic and 11 polymorphic loci were resolved. While no completely fixed differences between all the taxa could be demonstrated, four almost fixed differences were found. In some instances where populations belonging to different species were not geographically separated by great distances (<50km) shared alleles between species were demonstrated, indicating that introgression had occurred and may still be taking place. Overall, the genetic distance (Nei 1978) within taxa was less than that between taxa. The dendrogram resulting from cluster analysis of Nei's unbiased genetic distances divided the genus into four groups, three of which corresponded to three currently recognised taxa. The other group contained the remaining four taxa. Although the component taxa of this cluster could be readily separated using morphological characters, they could not be distinguished using allozyme data. The endemic distribution of B. rossii (Campbell Island and Auckland Island Group) and fixed morphological differences justify its remaining a separate taxon. The formal raising of B. gibbsii var. gibbsii to a separate specific status is subject to the analysis of further samples of this taxon. B. angustifolia, B, talbotii, and B. gibbsii vat. balanifera also remain separate taxa, with B. gibbsii var. balanifera being raised to a separate specific status. B. modesta, which is genetically closely related to B. hookeri, becomes a sub-species of this taxon.</p>


Phytotaxa ◽  
2019 ◽  
Vol 424 (5) ◽  
pp. 267-281 ◽  
Author(s):  
MARLEY FORD ◽  
DAN J. BLANCHON ◽  
ANDREW VEALE ◽  
ERIN J. DOYLE ◽  
JEREMY R. ROLFE ◽  
...  

A new species, Strigula oleistrata, segregated from S. novae-zelandiae is described. The new species is widely sympatric with Strigula novae-zelandiae from which it is separated by a range of morphological characters and also by its nrDNA ITS sequence. As a result of this segregation, a new circumscription of S. novae-zelandiae is also provided. Comments on the ecology and conservation status of both species, and a revised key to the foliicolous Strigula species of New Zealand are provided.


Hydrobiologia ◽  
1993 ◽  
Vol 260-261 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Sompop Intasuwan ◽  
Margaret E. Gordon ◽  
Charles H. Daugherty ◽  
Graeme C. Lindsay

2020 ◽  
Author(s):  
N Diehl ◽  
GH Kim ◽  
Giuseppe Zuccarello

© 2017 The Korean Society of Phycology. Geographic distributions of pathogens are affected by dynamic processes involving host susceptibility, availability and abundance. An oomycete, Pythium porphyrae, is the causative agent of red rot disease, which plagues Pyropia farms in Korea and Japan almost every year and causes serious economic damage. We isolated an oomycete pathogen infecting Pyropia plicata from a natural population in Wellington, New Zealand. The pathogen was identified as Pythium porphyrae using cytochrome oxidase subunit 1 and internal transcribed spacer of the rDNA cistron molecular markers. Susceptibility test showed that this Pythium from New Zealand was able to infect several different species and genera of Bangiales including Pyropia but is not able to infect their sporophytic (conchocelis) phases. The sequences of the isolated New Zealand strain were also identical to Pythium chondricola from Korea and the type strain from the Netherlands. Genetic species delimitation analyses found no support for separating P. porphyrae from P. chondricola, nor do we find morphological characters to distinguish them. We propose that Pythium chondricola be placed in synonymy with P. porphyrae. It appears that the pathogen of Pyropia, both in aquaculture in the northern hemisphere and in natural populations in the southern hemisphere is one species.


1988 ◽  
Vol 19 (2) ◽  
pp. 131-142
Author(s):  
S.B.J. Menken ◽  
J.W. van DRIEL

AbstractAllozyme variability at eight loci among nine species belonging to the Stigmella betulicola, S. lapponica and S. marginicolella species-groups was studied using horizontal starch gel electrophoresis. Mean observed heterozygosity ranged from 0.086 in S. sakhalinella to 0.135 in S. continuella. Genetic distances were generally very large and ranged from 1.269 between S. confusella and S'. lapponica to 8.041 between S. sakhalinella and S. luteella. Moreover, S. continuella did not share any allele with S. alnetella, S. luteella and S. microtheriella. The species-groups could be clearly identified using their allozyme variability and for each species several diagnostic loci were assigned. A dendrogram based on Nei's unbiased genetic distances corroborated the current taxonomic views based on morphological characters.


2020 ◽  
Author(s):  
N Diehl ◽  
GH Kim ◽  
Giuseppe Zuccarello

© 2017 The Korean Society of Phycology. Geographic distributions of pathogens are affected by dynamic processes involving host susceptibility, availability and abundance. An oomycete, Pythium porphyrae, is the causative agent of red rot disease, which plagues Pyropia farms in Korea and Japan almost every year and causes serious economic damage. We isolated an oomycete pathogen infecting Pyropia plicata from a natural population in Wellington, New Zealand. The pathogen was identified as Pythium porphyrae using cytochrome oxidase subunit 1 and internal transcribed spacer of the rDNA cistron molecular markers. Susceptibility test showed that this Pythium from New Zealand was able to infect several different species and genera of Bangiales including Pyropia but is not able to infect their sporophytic (conchocelis) phases. The sequences of the isolated New Zealand strain were also identical to Pythium chondricola from Korea and the type strain from the Netherlands. Genetic species delimitation analyses found no support for separating P. porphyrae from P. chondricola, nor do we find morphological characters to distinguish them. We propose that Pythium chondricola be placed in synonymy with P. porphyrae. It appears that the pathogen of Pyropia, both in aquaculture in the northern hemisphere and in natural populations in the southern hemisphere is one species.


Genetics ◽  
1982 ◽  
Vol 100 (1) ◽  
pp. 127-136
Author(s):  
Seido Ohnishi ◽  
Andrew J Leigh Brown ◽  
Robert A Voelker ◽  
Charles H Langley

ABSTRACT Genic variation in natural populations of Drosophila simulans was surveyed using allozymic and two-dimensional electrophoretic techniques. Consistent with some previous reports, allozymic heterozygosity appeared lower than in the sibling species D. melanogaster (0.07 vs. 0.16). No variation was detected by two-dimensional electrophoresis of 19 lines scored for 70 abundant proteins. This is consistent with reported reductions in estimates of genic heterozygosity by two-dimensional electrophoresis in D. melanogaster, Mus musculus, and man. Although the amount of intraspecific variation detected in abundant proteins was lower than that detected for allozymes in D. simulans and D. melanogaster, the genetic distances between the sibling species calculated from the two data sets are not significantly different (0.35 and 0.20). The allozyme and two-dimensional electrophoresis data confirmed the impression from other measures of genetic variation (mitochondrial DNA restriction maps and inversion polymorphisms) that D. simulans is substantially less variable than D. melanogaster.


2013 ◽  
Vol 26 (3) ◽  
pp. 210 ◽  
Author(s):  
Heidi M. Meudt ◽  
Jessica M. Prebble ◽  
Rebecca J. Stanley ◽  
Michael J. Thorsen

Species delimitation is of critical importance in systematics and biological and conservation research. The general-lineage species concept, which defines species as separately evolving metapopulation lineages, considers multiple lines of evidence to identify lineages and delimit species boundaries. Here, we apply the general-lineage concept to the New Zealand endemic Myosotis petiolata Hook.f. (Boraginaceae) species complex, to test its usefulness in the New Zealand Myosotis L. species radiation. We aimed to determine whether the complex contains separately evolving lineages to assess the criteria of monophyly, distinct genotypic clusters and fixed morphological differences by using amplified fragment length polymorphism (AFLP) and morphological data. The use of multiple criteria to identify separately evolving lineages within the M. petiolata complex was effective, but the different criteria were satisfied to varying degrees. Species rank is recommended for each of the currently recognised varieties as Myosotis pottsiana (L.B.Moore) Meudt, Prebble, R.J.Stanley & Thorsen (comb. & stat. nov.), M. pansa (L.B.Moore) Meudt, Prebble, R.J.Stanley & Thorsen (comb. & stat. nov.) and M. petiolata Hook.f. (North Island individuals only). A new allopatric subspecies, M. pansa subsp. praeceps Meudt, Prebble, R.J.Stanley & Thorsen (subsp. nov.), is also described. The distinguishing morphological characters and conservation status of each species are discussed. In addition, the low genetic diversity revealed in our population genetic analyses, coupled with few, fluctuating, disjunct populations, underscores the conservation priority of these three rare endemic New Zealand species.


2018 ◽  
pp. 47-52

Epimedium elatum (Morren & Decne) of family Berberidaceace is a rare perennial medicinal plant, endemic to high altitude forests of Northwestern Himalayas in India. Ethnobotanically, it has been used as an ingredient for treatment of bone-joint disorders, impotence and kidney disorders in Kashmir Himalayas. Phytochemically, it is rich in Epimedin ABC and Icariin; all of these have been demonstrated to possess remarkable biological activities like PDE-5 inhibition (treatment of erectile dysfunction), anticancer, antiosteoporosis antioxidant and antiviral properties. The present investigation reports its traditional usage, comprehensive distribution and conservation status from twenty ecogeographical regions in Kashmir Himalayas, India. The species was reported from Gurez valley for the first time. Numerous threats like excessive grazing, deforestration, habitat fragmentation, tourism encroachment, landslides and excessive exploitation have decreased its natural populations in most of the surveyed habitats. Consequently, its existence may become threatened in near future if timely conservation steps are not taken immediately by concerned stakeholders involved in medicinal plant research. Moreover, use of plant tissue culture techniques is recommended for development of its in vitro propagation protocols. Therefore, introduction of this medicinal plant in botanical gardens, protected sites and development of monitoring programmes are needed for its immediate conservation in Northwestern Himalayas, India.


Sign in / Sign up

Export Citation Format

Share Document