scholarly journals The Use of Nanostructured Calcium Silicate in Solar Cells

2021 ◽  
Author(s):  
◽  
Jessica Christine Lai

<p>Nanostructured calcium silicate (NCaSil) had previously been found to be photoactive and mildly semiconducting. Its use in solar cells was investigated in this project. Many different types of solar cells exist. Most common on the market are silicon-based cells, which generate charge separation through electric fields at p/n junctions. Over the last decade, dye-sensitised solar cells (DSSCs) have been heavily researched. DSSCs depend on effective electron/hole separation at the dye and efficient transfer to the electron- and hole-conducting materials. An older and little-researched form of cells is the photogalvanic cell, of which there are two forms. One contains a semiconducting material, whereas the other comprises of either one or two redox couples, in which at least one species is photoactive. An example of the latter form of cell is the odide/triiodide redox couple, which is commonly the electrolyte of choice in DSSCs and semiconductor-containing photogalvanic cells. This project predominantly investigated the use of NCaSil in conjunction with the iodide/triiodide redox couple and its use in solar cells. The project ascertained that, when used with the iodide/triiodide, the NCaSil did not act as a semiconducting material (either as in a DSSC or semiconductor photogalvanic cell). Rather iodide/triiodide's photogalvanic process dominated the cell, despite the presence of NCaSil. Furthermore, the addition of the stable NCaSils to the iodide/triiodide (with 5 wt% CaCl2) created "soggy sand electrolytes". These electrolytes showed increased conductivities, despite their higher viscosities, due to a synergistic effect. Soggy sand electrolytes show great promise in the development of more solid-like DSSCs. Furthermore, the project observed that the performance of NCaSil cells was maximized with a 70 wt% ethanol (30 wt% water) solvated electrolyte, with 1.5 wt% CaCl2 added to this electrolyte (or 5 wt % CaCl2 in the water content). When used long-term in conjunction with Reinforced NCaSil, a gel was formed, which showed promising activity. This activity was attributed to the interaction of surface-bound Ca2+ to iodine. Similar gels formed from vanadium- and cerium-treated NCaSil also showed great cell performance. Cell performance was further enhanced by backing the cell with a reflective or light scattering material, such as Teflon tape.</p>

2021 ◽  
Author(s):  
◽  
Jessica Christine Lai

<p>Nanostructured calcium silicate (NCaSil) had previously been found to be photoactive and mildly semiconducting. Its use in solar cells was investigated in this project. Many different types of solar cells exist. Most common on the market are silicon-based cells, which generate charge separation through electric fields at p/n junctions. Over the last decade, dye-sensitised solar cells (DSSCs) have been heavily researched. DSSCs depend on effective electron/hole separation at the dye and efficient transfer to the electron- and hole-conducting materials. An older and little-researched form of cells is the photogalvanic cell, of which there are two forms. One contains a semiconducting material, whereas the other comprises of either one or two redox couples, in which at least one species is photoactive. An example of the latter form of cell is the odide/triiodide redox couple, which is commonly the electrolyte of choice in DSSCs and semiconductor-containing photogalvanic cells. This project predominantly investigated the use of NCaSil in conjunction with the iodide/triiodide redox couple and its use in solar cells. The project ascertained that, when used with the iodide/triiodide, the NCaSil did not act as a semiconducting material (either as in a DSSC or semiconductor photogalvanic cell). Rather iodide/triiodide's photogalvanic process dominated the cell, despite the presence of NCaSil. Furthermore, the addition of the stable NCaSils to the iodide/triiodide (with 5 wt% CaCl2) created "soggy sand electrolytes". These electrolytes showed increased conductivities, despite their higher viscosities, due to a synergistic effect. Soggy sand electrolytes show great promise in the development of more solid-like DSSCs. Furthermore, the project observed that the performance of NCaSil cells was maximized with a 70 wt% ethanol (30 wt% water) solvated electrolyte, with 1.5 wt% CaCl2 added to this electrolyte (or 5 wt % CaCl2 in the water content). When used long-term in conjunction with Reinforced NCaSil, a gel was formed, which showed promising activity. This activity was attributed to the interaction of surface-bound Ca2+ to iodine. Similar gels formed from vanadium- and cerium-treated NCaSil also showed great cell performance. Cell performance was further enhanced by backing the cell with a reflective or light scattering material, such as Teflon tape.</p>


2015 ◽  
Vol 29 (32) ◽  
pp. 1550238
Author(s):  
Ke Ming Wan ◽  
Yu Jun Zhang ◽  
Ping Li ◽  
Gang Wang ◽  
Jin Xiang ◽  
...  

Conventional and inverted thin CdS/CdTe-based solar cells are fabricated using thermal deposition techniques, and their performance under an external electric field is investigated. Results show that both positive and negative electric fields can change the performance of the developed solar cells and that the latter recover to their initial state after switching the external electric field off. Heat treatment experiments confirm the negligible impact of the temperature on the solar cell performance. Transient photocurrent experiments show that the carrier transfer efficiency is modulated directly by an external electric field. By taking into account the CdS nanodipole, the effect of an external electric field on the solar cell performance can be well explained. The results presented in this paper open the way toward the realization of solar cells through carrier separation by an electric field provided by the CdS nanodipoles rather than the solar cell junction.


2021 ◽  
Vol 9 (10) ◽  
pp. 3642-3651
Author(s):  
Jihyun Lim ◽  
Do-Yeong Choi ◽  
Woongsik Jang ◽  
Hyeon-Ho Choi ◽  
Yun-Hi Kim ◽  
...  

Small molecule organic material, tris(4-(1-phenyl-1H-benzo[d]imidazole)phenyl)phosphine oxide (TIPO) was newly synthesised and introduced into an n-type interlayer in planar perovskite solar cells for effective electron transport.


2014 ◽  
Vol 43 (4) ◽  
pp. 1493-1497 ◽  
Author(s):  
Chun-Chen Yuan ◽  
Shi-Ming Wang ◽  
Wei-Lin Chen ◽  
Lin Liu ◽  
Chao Qin ◽  
...  

2012 ◽  
Vol 51 (39) ◽  
pp. 9896-9899 ◽  
Author(s):  
Ming Cheng ◽  
Xichuan Yang ◽  
Fuguo Zhang ◽  
Jianghua Zhao ◽  
Licheng Sun

2014 ◽  
Vol 2 (45) ◽  
pp. 19282-19289 ◽  
Author(s):  
Zhenggang Huang ◽  
Elisa Collado Fregoso ◽  
Stoichko Dimitrov ◽  
Pabitra Shakya Tuladhar ◽  
Ying Woan Soon ◽  
...  

The performance of bulk heterojunction solar cells based on a novel donor polymer DPP-TT-T was optimised by tuning molecular weight and thermal annealing.


2012 ◽  
Vol 5 (12) ◽  
pp. 9752 ◽  
Author(s):  
Haining Tian ◽  
Erik Gabrielsson ◽  
Peter William Lohse ◽  
Nick Vlachopoulos ◽  
Lars Kloo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document