scholarly journals Multifunctionality as a Strategy to Decrease Resource Use in Building Envelopes

2021 ◽  
Author(s):  
◽  
Clara H. Gerhardt

<p>The growing use of renewable and non-renewable resources by human society is increasingly seen as one of the root causes of the occurring imbalance in the global ecosystem. The effects are inter alia made responsible for a severe disruption in climate, loss of biodiversity, water shortage and a looming energy crisis that combined threaten human prosperity and livelihood. As a response to the occurring problems, global commitment to sustainable development is envisaged. In this context the building industry has a great responsibility as it's leverage as one of the biggest stakeholders in global material flows is significant. It will increasingly have to provide credible solutions and strategies to not only qualitatively change the composition of the triggered material flows, but to reduce the absolute consumption of raw and refined materials and generation of material flows to a sustainable level. The research presented in this thesis therefore analyses different strategies that can lead to the reduction of resource use in architecture, focussing on multifunctionality. A discussion of constructional principles of the building envelope analyses how multifunctionality can be achieved. A material intensity analysis using the material input per service unit concept (MIPS) quantifies the potential of multifunctionality to reduce resource use by comparing the material flows of a conventional and a multifunctional envelope. The case study shows that multifunctionality has the potential to reduce the resource use of building envelopes, if synergistic effects are created and if life-cycle wide resource flows are taken into account at the design stage. Both the theoretical first part and the case study in the second part of the thesis underline that the success of multifunctionality in contributing to resource flow reductions is highly dependent on the designer's awareness of the importance of material flows in the built environment and willingness to approach the topic with flexible design solutions. Furthermore it is underlined that only a combination of different strategies which address the topic at different leverage points will lead to the necessary absolute reduction in material flows.</p>

2021 ◽  
Author(s):  
◽  
Clara H. Gerhardt

<p>The growing use of renewable and non-renewable resources by human society is increasingly seen as one of the root causes of the occurring imbalance in the global ecosystem. The effects are inter alia made responsible for a severe disruption in climate, loss of biodiversity, water shortage and a looming energy crisis that combined threaten human prosperity and livelihood. As a response to the occurring problems, global commitment to sustainable development is envisaged. In this context the building industry has a great responsibility as it's leverage as one of the biggest stakeholders in global material flows is significant. It will increasingly have to provide credible solutions and strategies to not only qualitatively change the composition of the triggered material flows, but to reduce the absolute consumption of raw and refined materials and generation of material flows to a sustainable level. The research presented in this thesis therefore analyses different strategies that can lead to the reduction of resource use in architecture, focussing on multifunctionality. A discussion of constructional principles of the building envelope analyses how multifunctionality can be achieved. A material intensity analysis using the material input per service unit concept (MIPS) quantifies the potential of multifunctionality to reduce resource use by comparing the material flows of a conventional and a multifunctional envelope. The case study shows that multifunctionality has the potential to reduce the resource use of building envelopes, if synergistic effects are created and if life-cycle wide resource flows are taken into account at the design stage. Both the theoretical first part and the case study in the second part of the thesis underline that the success of multifunctionality in contributing to resource flow reductions is highly dependent on the designer's awareness of the importance of material flows in the built environment and willingness to approach the topic with flexible design solutions. Furthermore it is underlined that only a combination of different strategies which address the topic at different leverage points will lead to the necessary absolute reduction in material flows.</p>


Buildings ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 66
Author(s):  
Ugochukwu Elinwa ◽  
Cemil Atakara ◽  
Ifeoluwa Ojelabi ◽  
Abiola Abiodun
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 671
Author(s):  
Xiaoying Zhou ◽  
Feier Wang ◽  
Kuan Huang ◽  
Huichun Zhang ◽  
Jie Yu ◽  
...  

Predicting and allocating water resources have become important tasks in water resource management. System dynamics and optimal planning models are widely applied to solve individual problems, but are seldom combined in studies. In this work, we developed a framework involving a system dynamics-multiple objective optimization (SD-MOO) model, which integrated the functions of simulation, policy control, and water allocation, and applied it to a case study of water management in Jiaxing, China to demonstrate the modeling. The predicted results of the case study showed that water shortage would not occur at a high-inflow level during 2018–2035 but would appear at mid- and low-inflow levels in 2025 and 2022, respectively. After we made dynamic adjustments to water use efficiency, economic growth, population growth, and water resource utilization, the predicted water shortage rates decreased by approximately 69–70% at the mid- and low-inflow levels in 2025 and 2035 compared to the scenarios without any adjustment strategies. Water allocation schemes obtained from the “prediction + dynamic regulation + optimization” framework were competitive in terms of social, economic and environmental benefits and flexibly satisfied the water demands. The case study demonstrated that the SD-MOO model framework could be an effective tool in achieving sustainable water resource management.


Proceedings ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 29
Author(s):  
Alessandro Pracucci ◽  
Sara Magnani ◽  
Laura Vandi ◽  
Oscar Casadei ◽  
Amaia Uriarte ◽  
...  

The nearly Zero Energy building (nZEB) renovation market is currently the key feature in the construction sector. RenoZEB aims to develop a systematic approach for retrofitting by assembling different technologies in a plug and play building envelope. This paper presents the methodology used to transform the RenoZEB concept in the design system. A multi-criteria decision matrix is used for the selection of the best façade technologies within the market while the analysis of the existing building conditions allows to develop a replicable approach for designing deep retrofitting intervention through a plug&play façade. The methodology appears to be a valuable support for the selection of technologies and allows to define a design guideline for the envelope.


2021 ◽  
Vol 165 ◽  
pp. 105226
Author(s):  
Luis Gabriel Carmona ◽  
Kai Whiting ◽  
Dominik Wiedenhofer ◽  
Fridolin Krausmann ◽  
Tânia Sousa

2019 ◽  
Vol 34 (s1) ◽  
pp. s8-s8 ◽  
Author(s):  
Dudley McArdle ◽  
Caroline Spencer ◽  
Frank Archer

Introduction:Despite the influential Hyogo and Sendai Frameworks, risk remains poorly understood in the emergency preparedness sector. Hazard assessment and risk management are usually considered before events. An alternative view considers risk as a cascade of potential consequences throughout an event. The 2014 fire in the Victorian rural community of Morwell included a three-phased event: a small bush fire, from which embers ignited a persistent fire in a disused open cut brown coal mine fire. The consequent air pollution precipitated a public health emergency in the nearby community of 15,000 people.Aim:To examine this event as a case study to investigate concordance with accepted definitions and key elements of a cascading event.Methods:Selected literature informed a risk cascade definition and model as a framework to examine the key post-event public inquiries available in the public domain.Results:Informed by a Conceptual Framework for a Hazard Evolving into a Disaster (Birnbaum et al., 2015), Wong and colleagues promote a Core Structure of a Comprehensive Framework for Disaster Evaluation Typologies (Wong, 2017). This Core Structure provided an adequate model to examine the sequence of events in the Morwell event. Definitions of cascading effects is more complex (Zuccaro et al., 2018). Our analysis of the Morwell event used the authoritative definition of cascading disasters published by Pescaroli and Alexander (2015). Using this definition, the Morwell event increased in progression over time and generated unexpected secondary events of strong impact. The secondary events could be distinguished from the original source of disaster, and demonstrated failures of physical structures as well as inadequacy of disaster mitigation strategies, while highlighting unresolved vulnerabilities in human society.Discussion:The Morwell coal mine fire of 2014 reflects the key criteria of a cascading disaster and provides understandings to mitigate the consequences of similar events in the future.


2014 ◽  
Vol 657 ◽  
pp. 689-693
Author(s):  
Răzvan Corneliu Lefter ◽  
Daniela Popescu ◽  
Alexandrina Untăroiu

Important investmentsare made lately in the area of district heating, as a technology capable ofhelping countries to reach sustainability goals. In Romania, European fundswere spent for transition from the 2nd to the 3rdgeneration of district heating systems. The lack of appropriate monitoringsystems in old district heating systems makes optimisation nowadays very difficult,especially because nominal values used in the first design stage areoverestimated. Realistic nominal heat loads are necessary to make goodestimations of hydraulic parameters to be used for redesign. This studyproposes a method that uses the heat load duration curve theory to identify theappropriate nominal heat loads to be used for redesign. Comparison betweenresults obtained by applying the nominal heat loads of each consumer, as theywere established in the first design stage, and the ones identified by theproposed method are analyzed in a case study. The results show that errors arein the +/- 3% band, between the metered heat consumption rates and the proposedrates. The new method can be used for the sizing of pumps and district heatingnetworks after retrofit, in order to get better adjustments of the circulationpumps and increase of the energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document