scholarly journals Diagnostic Markers for Schistosome-Mediated Liver Disease

2021 ◽  
Author(s):  
◽  
Bhagyashree Manivannan

<p>Chronic schistosomiasis presents with either a moderate or a severe form, termed intestinal (INT) or hepatosplenic (HS) schistosomiasis, respectively. The Schistosoma mansoni-associated hepatomegaly is estimated in 8.5 million people and ultimately results from liver granulomas induced by trapped parasitic eggs. The CBA/J mouse model replicates these two human disease forms and was used to understand the progressive pathology that leads to HS and to identify potential biomarkers. In this model 20% of infected mice spontaneously develop hypersplenomegaly syndrome (HSS) by 20 weeks of infection while the remaining 80% develop moderate splenomegaly syndrome (MSS). Using this model, we compared the liver protein patterns of control mice and mice infected for 6, 8, 12, or 20 (MSS and HSS) weeks. Two-dimensional differential in gel electrophoresis (2D-DIGE) was used to identify protein pattern variations and protein spots were identified using matrix adsorption laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry. In the first experiment, we found 124 protein spot unique changes for MSS and HSS compared to control mice of which 80 were identified and 35 changes were specific for HSS. In the second experiment, comparison between various time points with control mice revealed 76 significant protein spot changes of which 44 were identified using MALDI-TOF mass spectrometry. Importantly, we found that the abundance of liver keratin D, transferrin isoforms, collagen isoforms, hydroxyproline and Schistosoma mansoni-phosphoenolpyruvate carboxykinase increased while epoxide hydrolase isoforms, peroxiredoxin 6 and major urinary protein (MUP) isoforms decreased significantly with infection. To verify the changes in the liver 2D-DIGE analysis, candidate liver protein markers were measured in mouse serum using targeted biochemical assays. The mouse serum analysis showed MUP levels were decreased, while transferrin, connective tissue growth factor (CTGF), keratin D, hydroxyproline were increased in HSS mice compared to control mice or MSS mice supporting the liver 2D-DIGE analysis. Using targeted assays, serum samples from INT and HS patients were tested for the candidate liver protein markers: keratin D, CTGF, hydroxyproline and transferrin. The human serum analysis showed keratin D levels increased for HS compared to INT and normal sera. The CTGF levels were high in INT compared to HS and normal sera, while transferrin remained unchanged in INT and HS similar to normal sera. Additionally, in severe HS disease, serum hydroxyproline emerged as a strong indicator of fibrosis. We believe that these findings will have direct value in the development of diagnostic tools for early detection of hepatosplenic schistosomiasis in humans.</p>

2021 ◽  
Author(s):  
◽  
Bhagyashree Manivannan

<p>Chronic schistosomiasis presents with either a moderate or a severe form, termed intestinal (INT) or hepatosplenic (HS) schistosomiasis, respectively. The Schistosoma mansoni-associated hepatomegaly is estimated in 8.5 million people and ultimately results from liver granulomas induced by trapped parasitic eggs. The CBA/J mouse model replicates these two human disease forms and was used to understand the progressive pathology that leads to HS and to identify potential biomarkers. In this model 20% of infected mice spontaneously develop hypersplenomegaly syndrome (HSS) by 20 weeks of infection while the remaining 80% develop moderate splenomegaly syndrome (MSS). Using this model, we compared the liver protein patterns of control mice and mice infected for 6, 8, 12, or 20 (MSS and HSS) weeks. Two-dimensional differential in gel electrophoresis (2D-DIGE) was used to identify protein pattern variations and protein spots were identified using matrix adsorption laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry. In the first experiment, we found 124 protein spot unique changes for MSS and HSS compared to control mice of which 80 were identified and 35 changes were specific for HSS. In the second experiment, comparison between various time points with control mice revealed 76 significant protein spot changes of which 44 were identified using MALDI-TOF mass spectrometry. Importantly, we found that the abundance of liver keratin D, transferrin isoforms, collagen isoforms, hydroxyproline and Schistosoma mansoni-phosphoenolpyruvate carboxykinase increased while epoxide hydrolase isoforms, peroxiredoxin 6 and major urinary protein (MUP) isoforms decreased significantly with infection. To verify the changes in the liver 2D-DIGE analysis, candidate liver protein markers were measured in mouse serum using targeted biochemical assays. The mouse serum analysis showed MUP levels were decreased, while transferrin, connective tissue growth factor (CTGF), keratin D, hydroxyproline were increased in HSS mice compared to control mice or MSS mice supporting the liver 2D-DIGE analysis. Using targeted assays, serum samples from INT and HS patients were tested for the candidate liver protein markers: keratin D, CTGF, hydroxyproline and transferrin. The human serum analysis showed keratin D levels increased for HS compared to INT and normal sera. The CTGF levels were high in INT compared to HS and normal sera, while transferrin remained unchanged in INT and HS similar to normal sera. Additionally, in severe HS disease, serum hydroxyproline emerged as a strong indicator of fibrosis. We believe that these findings will have direct value in the development of diagnostic tools for early detection of hepatosplenic schistosomiasis in humans.</p>


2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 173-173
Author(s):  
Jason B. Fleming ◽  
Cynthia Trajtenberg

173 Background: There is currently no simple test to identify patients with pancreatic ductal adenocarcinoma (PDAC). The goal of this research is to develop such a method. We hypothesized that the salivary proteome of patients with localized PDAC contains a protein set distinct from normal subjects. Methods: We collected, processed and stored stimulated whole salivary gland secretions from patients with Stage I-II PDAC and aged-matched healthy volunteers. Fluorescently-labeled proteins were separated using 2D DIGE. Overlay imaging techniques compared 2D DIGE results, and spots representing individual proteins were quantified by signal, isolated from the gels, processed and protein identified using MALDI-TOF Mass Spectrometry. The SWISS-PROT database was used to identify proteins, and the ratio of signal in cancer versus normal samples was quantified and compared using Student’s t-test. Results: Samples from 10 PDAC patients and 10 healthy subjects were compared. A total of 96 spots on the 2D-DIGE comparison were uniquely present or absent in PDAC patient saliva. MALDI-TOF Mass Spectrometry examination of these 96 characterized 53 unique proteins. After eliminating duplicates and proteins without significant differences (p-value <0.02), a total of 30 proteins were identified with levels higher (n=18) or lower (n=12) in saliva from PDAC patients versus normal subjects. Conclusions: Examination of saliva from pancreatic cancer patients identified a set of proteins unique from normal subjects. These proteins represent targets for the development of biomarkers that could be used in early detection of pancreatic cancer.


2012 ◽  
Vol 48 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Karen Oliva ◽  
Gillian Barker ◽  
Clyde Riley ◽  
Mark J Bailey ◽  
Michael Permezel ◽  
...  

Our aim was to study the protein expression profiles of placenta obtained from lean and obese pregnant women with normal glucose tolerance at the time of term Caesarean section. We used two-dimensional difference gel electrophoresis (2D-DIGE), utilising narrow-range immobilised pH gradient strips that encompassed the broad pH range of 4–5 and 5–6, followed by MALDI-TOF mass spectrometry of selected protein spots. Western blot and quantitative RT-PCR (qRT-PCR) analyses were performed to validate representative findings from the 2D-DIGE analysis. Eight proteins were altered (six down-regulated and two up-regulated on obese placentas). Annexin A5 (ANXA5), ATP synthase subunit beta, mitochondria (ATPB), brain acid soluble protein 1 (BASP1), ferritin light chain (FTL), heterogeneous nuclear ribonucleoprotein C (HNRPC) and vimentin (VIME) were all lower in obese patients. Alpha-1-antitrypsin (A1AT) and stress-70 protein, mitochondrial (GRP75) were higher in obese patients. Western blot analysis of ANXA5, ATPB, FTL, VIME, A1AT and GRP75 confirmed the findings from the 2D-DIGE analysis. For brain acid soluble protein 1 and HNRPC, qRT-PCR analysis also confirmed the findings from the 2D-DIGE analysis. Immunohistochemical analysis was also used to determine the localisation of the proteins in human placenta. In conclusion, proteomic analysis of placenta reveals differential expression of several proteins in patients with pre-existing obesity. These proteins are implicated in a variety of cellular functions such as regulation of growth, cytoskeletal structure, oxidative stress, inflammation, coagulation and apoptosis. These disturbances may have significant implications for fetal growth and development.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua Tian ◽  
Li Yan ◽  
Li Xiao-fei ◽  
Sun Hai-yan ◽  
Chen Juan ◽  
...  

Abstract Purpose One major reason of the high mortality of epithelial ovarian cancer (EOC) is due to platinum-based chemotherapy resistance. Aberrant DNA methylation may be a potential mechanism underlying the development of platinum resistance in EOC. The purpose of this study is to discover potential aberrant DNA methylation that contributes to drug resistance. Methods By initially screening of 16 platinum-sensitive/resistant samples from EOC patients with reduced representation bisulfite sequencing (RRBS), the upstream region of the hMSH2 gene was discovered hypermethylated in the platinum-resistant group. The effect of hMSH2 methylation on the cellular response to cisplatin was explored by demethylation and knockdown assays in ovarian cancer cell line A2780. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was employed to examine the methylation levels of hMSH2 upstream region in additional 40 EOC patient samples. RT-qPCR and IHC assay was used to detect the hMSH2 mRNA and protein expression in extended 150 patients. Results RRBS assay discovered an upstream region from − 1193 to − 1125 of hMSH2 was significant hypermethylated in resistant EOC patients (P = 1.06 × 10−14). In vitro analysis demonstrated that global demethylation increased cisplatin sensitivity along with a higher expression of the hMSH2 mRNA and protein. Knockdown hMSH2 reduced the cell sensitivity to cisplatin. MALDI-TOF mass spectrometry assay validated the strong association of hypermethylation of hMSH2 upstream region with platinum resistance. Spearman’s correlation analysis revealed a significantly negative connection between methylation level of hMSH2 upstream region and its expression. The Kaplan-Meier analyses showed the high methylation of hMSH2 promoter region, and its low expressions are associated with worse survival. In multivariable models, hMSH2 low expression was an independent factor predicting poor outcome (P = 0.03, HR = 1.91, 95%CI = 1.85–2.31). Conclusion The hypermethylation of hMSH2 upstream region is associated with platinum resistant in EOC, and low expression of hMSH2 may be an index for the poor prognosis.


2021 ◽  
pp. 103835
Author(s):  
Sébastien Bridel ◽  
Stephen C. Watts ◽  
Louise M. Judd ◽  
Taylor Harshegyi ◽  
Virginie Passet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document