scholarly journals Templated Growth of Fullerene C60 Crystals by Triptycene in  Polymer Blend Films

2021 ◽  
Author(s):  
◽  
Cole Ross Lomas

<p>Molecular semiconductors such as fullerene C60 have become ubiquitous components of organic electronic devices, owing to their electronic structure and favourable material processing properties. In most conjugated polymer-fullerene films that form the active layer in bulk heterojunction (BHJ) organic solar cells, organisation of the fullerene phases to the correct nanoscale dimensions for exciton charge separation and transportation to the device electrodes is driven by excess fullerene addition. While this approach can deliver acceptable film morphology for a BHJ solar cell, it is not optimal as the photoactive polymer component of the film becomes diluted by C60 thereby reducing device efficiency. This motivates a supramolecular approach as an alternative method to control fullerene assembly and give morphological control of conjugated polymer films. Triptycene (TPC) is a readily available molecule whose rigid paddle wheel structure and hydrophobicity present three excellent C60 binding cavities. Triptycene has the potential to template the macroscopic assembly of fullerene molecules within a polymer-fullerene blend film, thereby controlling phase separation without excess fullerene addition. In this project, the ability of TPC to template the assembly of C60 was investigated in single crystals, polymer films, and in functional electronic devices. Blue-shifted fluorescence from TPC·C60 co-crystals was used as a spectroscopic signature to probe the molecular environment of C60 dispersed through an optically transparent polystyrene polymer film, and confirm that TPC hosts C60 molecules within the polymer matrix. Ultraviolet-visible (UV-Vis) spectroscopy of the polystyrene:C60:TPC films confirmed a reduction in the orbital overlap between adjacent C60 molecules providing further evidence that TPC had spatially separated C60 molecules upon templating the macroscopic assembly. When TPC was added to conjugated polymer poly[2-methoxy-5-(2-ethyhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and MEHPPV: C60 films as a blend additive, fluorescence spectroscopy identified two unique effects: (1) the suppression of excimer states when TPC spatially separated the conjugated polymer chains, and (2) the assembly of C60 into larger domains to drive polymer and C60 phase separation, giving morphological control of the polymer film. The fabrication of polystyrene:C60:TPC sandwich devices showed the electronic conduction of C60 was unaltered by spatial separation and reduction in electronic coupling between neighbouring C60 molecules caused by TPC templation. MEHPPV: C60 BHJ solar cells suffered a loss in photocurent when TPC was added to the active layer when compared to fabricated devices that used excess fullerene addition to control film morphology. However, due to time constraints, only one polymer film composition was able to be tested. Since the polymer film morphology was shown to be sensitive to the molar ratios of C60 and TPC, there is immense potential to further investigate TPC as a blend additive in conjugated polymer films and optimise the film composition to obtain desirable morphology for a BHJ solar cell. The functionalisation of TPC could provide a method to further enhance interactions between TPC and C60 and provide greater control over C60 self-assembly within a polymer film.</p>

2021 ◽  
Author(s):  
◽  
Cole Ross Lomas

<p>Molecular semiconductors such as fullerene C60 have become ubiquitous components of organic electronic devices, owing to their electronic structure and favourable material processing properties. In most conjugated polymer-fullerene films that form the active layer in bulk heterojunction (BHJ) organic solar cells, organisation of the fullerene phases to the correct nanoscale dimensions for exciton charge separation and transportation to the device electrodes is driven by excess fullerene addition. While this approach can deliver acceptable film morphology for a BHJ solar cell, it is not optimal as the photoactive polymer component of the film becomes diluted by C60 thereby reducing device efficiency. This motivates a supramolecular approach as an alternative method to control fullerene assembly and give morphological control of conjugated polymer films. Triptycene (TPC) is a readily available molecule whose rigid paddle wheel structure and hydrophobicity present three excellent C60 binding cavities. Triptycene has the potential to template the macroscopic assembly of fullerene molecules within a polymer-fullerene blend film, thereby controlling phase separation without excess fullerene addition. In this project, the ability of TPC to template the assembly of C60 was investigated in single crystals, polymer films, and in functional electronic devices. Blue-shifted fluorescence from TPC·C60 co-crystals was used as a spectroscopic signature to probe the molecular environment of C60 dispersed through an optically transparent polystyrene polymer film, and confirm that TPC hosts C60 molecules within the polymer matrix. Ultraviolet-visible (UV-Vis) spectroscopy of the polystyrene:C60:TPC films confirmed a reduction in the orbital overlap between adjacent C60 molecules providing further evidence that TPC had spatially separated C60 molecules upon templating the macroscopic assembly. When TPC was added to conjugated polymer poly[2-methoxy-5-(2-ethyhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and MEHPPV: C60 films as a blend additive, fluorescence spectroscopy identified two unique effects: (1) the suppression of excimer states when TPC spatially separated the conjugated polymer chains, and (2) the assembly of C60 into larger domains to drive polymer and C60 phase separation, giving morphological control of the polymer film. The fabrication of polystyrene:C60:TPC sandwich devices showed the electronic conduction of C60 was unaltered by spatial separation and reduction in electronic coupling between neighbouring C60 molecules caused by TPC templation. MEHPPV: C60 BHJ solar cells suffered a loss in photocurent when TPC was added to the active layer when compared to fabricated devices that used excess fullerene addition to control film morphology. However, due to time constraints, only one polymer film composition was able to be tested. Since the polymer film morphology was shown to be sensitive to the molar ratios of C60 and TPC, there is immense potential to further investigate TPC as a blend additive in conjugated polymer films and optimise the film composition to obtain desirable morphology for a BHJ solar cell. The functionalisation of TPC could provide a method to further enhance interactions between TPC and C60 and provide greater control over C60 self-assembly within a polymer film.</p>


2014 ◽  
Vol 2 (15) ◽  
pp. 5427-5433 ◽  
Author(s):  
Shugang Li ◽  
Zhongcheng Yuan ◽  
Jianyu Yuan ◽  
Ping Deng ◽  
Qing Zhang ◽  
...  

An expanded isoindigo unit (IBTI) has been incorporated into a donor–acceptor conjugated polymer for the first time. The PCE of the solar cell device based on the new polymer reached 6.41% with a fill factor of 0.71.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2425
Author(s):  
Jiuchao Dong ◽  
Shigeki Nimori ◽  
Hiromasa Goto

A new method for fabricating conjugated polymer films was developed using electrochemical polymerization in liquid crystals and magnetic orientation. A uniaxial main chain orientation and a crosslinked network structure were achieved with this method. By employing eight types of monomers, the influence of the crosslinking for the film was investigated. The crosslinking was found to improve the solvent resistance of the conjugated polymer films. This new method is expected to be useful in various applications, such as high-powered organic electronic devices with durability.


2021 ◽  
Author(s):  
Yanming Sun ◽  
Yunhao Cai ◽  
Qian Li ◽  
Guanyu Lu ◽  
Hwa Sook Ryu ◽  
...  

Abstract The development of high-performance organic solar cells (OSCs) with thick active layers is of crucial importance for the roll-to-roll printing of large-area solar panels. Unfortunately, increasing the active layer thickness usually results in a significant reduction in efficiency. Herein, we fabricated efficient thick-film OSCs with an active layer consisting of one polymer donor and two non-fullerene acceptors. The two acceptors were found to possess enlarged exciton diffusion length in the mixed phase, which is beneficial to exciton generation and dissociation. Additionally, layer by layer approach was employed to optimize the vertical phase separation. Benefiting from the synergetic effects of enlarged exciton diffusion length and graded vertical phase separation, a record high efficiency of 17.31% (certified value of 16.9%) was obtained for the 300 nm-thick OSC, with an unprecedented short-circuit current density of 28.36 mA cm−2, and a high fill factor of 73.0%. Moreover, the device with an active layer thickness of 500 nm also shows a record efficiency of 15.21%. This work provides new insights into the fabrication of high-efficiency OSCs with thick active layers.


2020 ◽  
Vol 8 (16) ◽  
pp. 5613-5619 ◽  
Author(s):  
Lu Zhang ◽  
Zicheng Ding ◽  
Ruyan Zhao ◽  
Feng Jirui ◽  
Wei Ma ◽  
...  

The aggregation tendency in solution of polymer donors is the dominant factor in the phase separation of semi-crystalline polymer donor/amorphous polymer acceptor blends in all-PSCs.


2019 ◽  
Vol 43 (35) ◽  
pp. 13998-14008
Author(s):  
Yuancheng Qin ◽  
Manman Li ◽  
Yu Xie ◽  
Xue Li ◽  
Chunming Yang ◽  
...  

The morphology of the active layer, the formation of an interpenetrating network structure and the phase separation of donor–acceptor polymers has been improved by spin 1/2 radicals, and enhanced the PCEs of the organic solar cells.


2019 ◽  
Vol 7 (45) ◽  
pp. 26154-26161 ◽  
Author(s):  
Jiabin Qi ◽  
Linpeng Li ◽  
Hao Xiong ◽  
Aurelia Chi Wang ◽  
Chengyi Hou ◽  
...  

Inspired by heliotropism in nature, a passive walking perovskite solar cell is constructed as a prototype actuator with an advanced structure.


2020 ◽  
Vol 8 (24) ◽  
pp. 8191-8198
Author(s):  
Ritesh Kant Gupta ◽  
Rabindranath Garai ◽  
Mohammad Adil Afroz ◽  
Parameswar Krishnan Iyer

Fabrication of high performance polymer solar cells through the hot-casting technique, which modulates the thickness and roughness of the active layer and also the carrier mobility of the solar cell devices.


2019 ◽  
Vol 43 (10) ◽  
pp. 4242-4252
Author(s):  
Radhakrishna Ratha ◽  
Mohammad Adil Afroz ◽  
Ritesh Kant Gupta ◽  
Parameswar Krishnan Iyer

Side chain ester substitution on donor–acceptor based conjugated polymers used as solar harvesters in a bulk-heterojunction (BHJ) polymer solar cell (PSC) can improve harvesting properties, phase separation in the active layer and PSC performance.


Author(s):  
Bianca Pedroso Silva Santos ◽  
Arthur de Castro Ribeiro ◽  
Jose Geraldo de Melo Furtado ◽  
Maria de Fátima Vieira Marques

Polymeric solar cells (PSCs) are a promising alternative for harnessing solar energy and producing clean and renewable energy. In the present work, a new photovoltaic polymer was synthesized to be applied as an electron donor in PSCs. The conjugated polymer showed high solubility. The optical and electronic properties were investigated in which it was possible to observe wide absorption band and bandgap indicating that it is a promising material for application in solar cells.


Sign in / Sign up

Export Citation Format

Share Document