scholarly journals Symbiont diversity and coral bleaching: An antioxidant view on thermal stress

2021 ◽  
Author(s):  
◽  
Thomas Krüger

<p>The functioning of coral reef systems, as biodiversity hotspots, is largely dependent on the symbiotic association between dinoflagellate symbionts (Symbiodinium spp.) and scleractinian coral hosts. The breakdown of this symbiosis (coral bleaching), as a result of global warming and other stressors, therefore has profound implications for the tropical marine environment. Corals associate with a variety of Symbiodinium genotypes, and it is this mosaic nature that contributes to the variable stress thresholds of corals. Research over the past 25 years has established that the generation and scavenging of reactive oxygen species (ROS) in both partners, under light and thermal stress, is a fundamental element of the bleaching response. However, while the existence of more thermally susceptible and tolerant symbiont types has been recognized, the differences in the antioxidant systems that may accompany these properties have received less attention. The purpose of this thesis was to explore the role of the antioxidant network in explaining the different thermal susceptibilities of various symbiont types and how the activity of key antioxidants in both partners under thermal stress relates to bleaching patterns in different corals. Thus, the specific objectives were to: (1) assess the antioxidant network response in different Symbiodinium types; (2) investigate the activity and structural diversity of key enzymatic antioxidants in different Symbiodinium types; (3) examine the regulation of these antioxidants at the transcriptomic and proteomic levels; and (4) contrast the symbiont’s and host’s antioxidant responses under bleaching conditions. Symbiodinium types in culture were found to differ significantly with regards to the concentration and activity of specific antioxidants, exhibiting magnitude scale differences in some of them. However, the response of the main removal pathway, involving superoxide dismutase (SOD) and ascorbate peroxidase (APX), under lethal thermal stress was fairly similar. Instead, the typespecific differences were found to lie in more downstream systems, and particularly in those associated with the maintenance of the glutathione redox state. A declining glutathione redox state was the common feature of the three thermally susceptible Symbiodinium types: B1, C1, and E. Indeed, in comparison to the most sensitive type (B1), the tolerant type F1 exhibited stronger antioxidant up-regulation and the successful preservation of the highly reduced glutathione pool. Comparing antioxidant gene orthologues from members of different Symbiodinium clades (A-E) revealed a higher degree of sequence variation at the amino acid level for peroxidases, which reflected the genetic radiation of the genus. In contrast, primary defences in the form of SOD isoforms were highly conserved. Sequence variations between Symbiodinium types involved residues that constitute binding sites of substrates and co-factors, and therefore likely affect the catalytic properties of these enzymes. While expression of antioxidant genes was successfully measured in Symbiodinium B1, it was not possible to assess the link between transcriptomic expression and proteomic activity due to high variability in expression between replicates, and little response in their enzymatic activity over three days. In contrast to previous findings, up-regulation of antioxidant defences was not evident in Symbiodinium cells inside the host (i.e. in hospite). In fact, oxidative stress in the thermally sensitive corals Acropora millepora and Pocillopora damicornis was only apparent from increased host catalase activity, which interestingly preceded photosynthetic dysfunction of their symbionts. Baseline antioxidant activities of thermally tolerant and susceptible host species showed no differences, though the scavenging activities of the hosts were considerably higher than those of the symbionts. Baseline activities for the symbionts were different, however, with Symbiodinium C15 from the thermally tolerant coral Montipora digitata exhibiting the lowest activities for SOD and catalase peroxidase. This thesis provides significant findings with respect to the variability in antioxidant activity, structure, and network response in different Symbiodinium types in culture, and how these relate to thermal tolerance. What effect these differences have on the response in the intact symbiosis remains unclear, however, as the findings contradict the classic bleaching model of photoinhibition and symbiont-derived ROS. I argue, using previously published data, that heating rates might profoundly affect the way we perceive the antioxidant response of both partners to thermal stress, and that host antioxidant defences might not be as easily overwhelmed by symbiont ROS as suggested previously. This thesis reports important findings on the antioxidant system in different Symbiodinium types, but also raises new questions about the antioxidant response of the intact coral.</p>

2021 ◽  
Author(s):  
◽  
Thomas Krüger

<p>The functioning of coral reef systems, as biodiversity hotspots, is largely dependent on the symbiotic association between dinoflagellate symbionts (Symbiodinium spp.) and scleractinian coral hosts. The breakdown of this symbiosis (coral bleaching), as a result of global warming and other stressors, therefore has profound implications for the tropical marine environment. Corals associate with a variety of Symbiodinium genotypes, and it is this mosaic nature that contributes to the variable stress thresholds of corals. Research over the past 25 years has established that the generation and scavenging of reactive oxygen species (ROS) in both partners, under light and thermal stress, is a fundamental element of the bleaching response. However, while the existence of more thermally susceptible and tolerant symbiont types has been recognized, the differences in the antioxidant systems that may accompany these properties have received less attention. The purpose of this thesis was to explore the role of the antioxidant network in explaining the different thermal susceptibilities of various symbiont types and how the activity of key antioxidants in both partners under thermal stress relates to bleaching patterns in different corals. Thus, the specific objectives were to: (1) assess the antioxidant network response in different Symbiodinium types; (2) investigate the activity and structural diversity of key enzymatic antioxidants in different Symbiodinium types; (3) examine the regulation of these antioxidants at the transcriptomic and proteomic levels; and (4) contrast the symbiont’s and host’s antioxidant responses under bleaching conditions. Symbiodinium types in culture were found to differ significantly with regards to the concentration and activity of specific antioxidants, exhibiting magnitude scale differences in some of them. However, the response of the main removal pathway, involving superoxide dismutase (SOD) and ascorbate peroxidase (APX), under lethal thermal stress was fairly similar. Instead, the typespecific differences were found to lie in more downstream systems, and particularly in those associated with the maintenance of the glutathione redox state. A declining glutathione redox state was the common feature of the three thermally susceptible Symbiodinium types: B1, C1, and E. Indeed, in comparison to the most sensitive type (B1), the tolerant type F1 exhibited stronger antioxidant up-regulation and the successful preservation of the highly reduced glutathione pool. Comparing antioxidant gene orthologues from members of different Symbiodinium clades (A-E) revealed a higher degree of sequence variation at the amino acid level for peroxidases, which reflected the genetic radiation of the genus. In contrast, primary defences in the form of SOD isoforms were highly conserved. Sequence variations between Symbiodinium types involved residues that constitute binding sites of substrates and co-factors, and therefore likely affect the catalytic properties of these enzymes. While expression of antioxidant genes was successfully measured in Symbiodinium B1, it was not possible to assess the link between transcriptomic expression and proteomic activity due to high variability in expression between replicates, and little response in their enzymatic activity over three days. In contrast to previous findings, up-regulation of antioxidant defences was not evident in Symbiodinium cells inside the host (i.e. in hospite). In fact, oxidative stress in the thermally sensitive corals Acropora millepora and Pocillopora damicornis was only apparent from increased host catalase activity, which interestingly preceded photosynthetic dysfunction of their symbionts. Baseline antioxidant activities of thermally tolerant and susceptible host species showed no differences, though the scavenging activities of the hosts were considerably higher than those of the symbionts. Baseline activities for the symbionts were different, however, with Symbiodinium C15 from the thermally tolerant coral Montipora digitata exhibiting the lowest activities for SOD and catalase peroxidase. This thesis provides significant findings with respect to the variability in antioxidant activity, structure, and network response in different Symbiodinium types in culture, and how these relate to thermal tolerance. What effect these differences have on the response in the intact symbiosis remains unclear, however, as the findings contradict the classic bleaching model of photoinhibition and symbiont-derived ROS. I argue, using previously published data, that heating rates might profoundly affect the way we perceive the antioxidant response of both partners to thermal stress, and that host antioxidant defences might not be as easily overwhelmed by symbiont ROS as suggested previously. This thesis reports important findings on the antioxidant system in different Symbiodinium types, but also raises new questions about the antioxidant response of the intact coral.</p>


2021 ◽  
Author(s):  
Eva Majerová ◽  
Crawford Drury

AbstractGlobal coral reef decline is driven by the breakdown of the coral-algal symbiosis during temperature stress. Corals can acclimatize to higher temperatures on intra-generational timescales, but the complex cellular processes that underlie this ability and its trade-offs are poorly understood. We show that preconditioning-based improvements in thermal tolerance in Pocillopora acuta are accompanied by host increases in glutathione reductase (GR) activity and expression, which support a reducing intracellular environment that facilitates reactive oxygen scavenging and prevents DNA damage. We found a strong correlation between GR and BI-1 (Bax-inhibitor 1) expression in heat-stressed preconditioned corals and discovered an antioxidant response element (ARE) in the GR promoter, suggesting BI-1 could regulate GR expression in corals through the Nrf2/ARE pathway. To fortify this link, we developed an siRNA-mediated gene knockdown protocol and targeted the coral BI-1 gene. BI-1 knock-down decreased glutathione reductase expression, glutathione reductase activity and increased oxidative DNA damage in heat-stressed preconditioned corals, showing that enhanced regulation of antioxidant response during acute heat stress is a key mechanism that prevents oxidative DNA damage after preconditioning. These results describe the manipulation of an important molecular cascade at the core of symbiosis maintenance under thermal stress and show that ‘induced’ symbiosis stability does not impact DNA integrity.Significance StatementCoral bleaching is a fundamental threat to reef ecosystems, but the molecular drivers of this process remain poorly understood. We show that corals pre-exposed to sublethal thermal stress gain tolerance through their ability to process reactive oxygen species, a critical cellular toxin during coral bleaching. This ability is due to overexpression of glutathione reductase, an enzyme which stabilizes the reducing environment of the cell and buffers oxidative stress. Importantly, knock-down of genes that influence glutathione reductase expression initiates a molecular cascade that leads to DNA damage, a hallmark of oxidative thermal stress in corals. This work expands our understanding of symbiosis ecology and the importance of thermal acclimatization in corals.


2019 ◽  
Vol 10 ◽  
Author(s):  
Irina Trautsch ◽  
Eriona Heta ◽  
Poh Loong Soong ◽  
Elif Levent ◽  
Viacheslav O. Nikolaev ◽  
...  

2010 ◽  
Vol 323 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Haolin Chen ◽  
Liang Zhou ◽  
Chieh-Yin Lin ◽  
Matthew C. Beattie ◽  
June Liu ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6183
Author(s):  
Delia Acevedo-León ◽  
Lidia Monzó-Beltrán ◽  
Segundo Ángel Gómez-Abril ◽  
Nuria Estañ-Capell ◽  
Natalia Camarasa-Lillo ◽  
...  

The role of oxidative stress (OS) in cancer is a matter of great interest due to the implication of reactive oxygen species (ROS) and their oxidation products in the initiation of tumorigenesis, its progression, and metastatic dissemination. Great efforts have been made to identify the mechanisms of ROS-induced carcinogenesis; however, the validation of OS byproducts as potential tumor markers (TMs) remains to be established. This interventional study included a total of 80 colorectal cancer (CRC) patients and 60 controls. By measuring reduced glutathione (GSH), its oxidized form (GSSG), and the glutathione redox state in terms of the GSSG/GSH ratio in the serum of CRC patients, we identified significant changes as compared to healthy subjects. These findings are compatible with the effectiveness of glutathione as a TM. The thiol redox state showed a significant increase towards oxidation in the CRC group and correlated significantly with both the tumor state and the clinical evolution. The sensitivity and specificity of serum glutathione levels are far above those of the classical TMs CEA and CA19.9. We conclude that the GSSG/GSH ratio is a simple assay which could be validated as a novel clinical TM for the diagnosis and monitoring of CRC.


2018 ◽  
Vol 285 (1892) ◽  
pp. 20182141 ◽  
Author(s):  
Stefania Casagrande ◽  
Michaela Hau

The trade-off between reproductive investment and survival is central to life-history theory, but the relative importance and the complex interactions among the physiological mechanisms mediating it are still debated. Here we experimentally tested whether baseline glucocorticoid hormones, the redox system or their interaction mediate reproductive investment–survival trade-offs in wild great tits ( Parus major ). We increased the workload of parental males by clipping three feathers on each wing, and 5 days later determined effects on baseline corticosterone concentrations (Cort), redox state (reactive oxygen metabolites, protein carbonyls, glutathione peroxidase [GPx], total non-enzymatic antioxidants), body mass, body condition, reproductive success and survival. Feather-clipping did not affect fledgling numbers, chick body condition, nest provisioning rates or survival compared with controls. However, feather-clipped males lost mass and increased both Cort and GPx concentrations. Within feather-clipped individuals, GPx increases were positively associated with reproductive investment (i.e. male nest provisioning). Furthermore, within all individuals, males that increased GPx suffered reduced survival rates. Baseline Cort increases were related to mass loss but not to redox state, nest provisioning or male survival. Our findings provide experimental evidence that changes in the redox system are associated with the trade-off between reproductive investment and survival, while baseline Cort may support this trade-off indirectly through a link with body condition. These results also emphasize that plastic changes in individuals, rather than static levels of physiological signals, may mediate life-history trade-offs.


2021 ◽  
Author(s):  
Zechariah Haber ◽  
Nardy Lampl ◽  
Andreas J Meyer ◽  
Einat Zelinger ◽  
Matanel Hipsch ◽  
...  

Abstract Plants are subjected to fluctuations in light intensity, and this causes unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate-glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2in chloroplasts. This was carried out over several days, under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in nonphotochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.


Sign in / Sign up

Export Citation Format

Share Document