scholarly journals Merino Becomes Noble: A study of nanogold, wool and nanogold–wool composites

2021 ◽  
Author(s):  
◽  
Andrea Kolb

<p>Our research group, led by Professor J. H. Johnston, has developed a novel approach for dyeing merino wool with nanogold [gold nanoparticles (AuNPs)] by coupling the chemistry of gold with that of wool fibres. This utilises the plasmonic properties of nanogold to create attractive fabric colours ranging from pink to purple to grey. The newly created fabric benefits from the synergistic effect of the unique properties of strong merino wool and valuable gold, i.e. the innovative product is intensely coloured, colour fast, naturally hydrophobic, anti-microbial, anti-static as well as having first-rate wearing comfort. This innovation has attracted substantial interest from industry resulting in the collaboration of our research group with leading fabric manufacturers and designers. However, the colour range of this unique high-value product is limited. It was desirable to enlarge the colour range by developing new strategies to create wash fast nanogold–wool composites with a broad colour spectrum. Thus my research aimed to identify and understand the fundamental principles that govern the formation of nanogold–wool composites. Based on the derived knowledge, it was aimed to develop a methodology to covalently link pre-synthesised AuNPs of various colours to the surface of New Zealand merino wool fibres in order to obtain wash fast nanogold–wool composites with a broad colour spectrum. This involved the synthesis, functionalisation and characterisation of colloidal AuNPs, and their application as colourants for wool. The methodology followed three general steps: (1) synthesis of colloidal gold, (2) preparation of the wool surface for the colouring processes, and (3) production of nanogold–wool composites. Each work stage was accompanied by thorough analysis and characterisation of the intermediate and final products. Studying colloidal gold systems and nanogold–wool composites which were previously reported provided the insights that were necessary to develop new methodologies to strongly link AuNPs to wool. For instance, nanogold stabilised by oleylamine produces especially bright pink nanogold–wool composites; however, the AuNP–wool bond is relatively weak. Hence, several AuNP–wool bond types were intensively studied, and as a result of combining the knowledge gained, two approaches were developed to provide a proof-of-concept for the creation of wash fast nanogold–wool composites. These approaches involved a specifically designed, in-house-synthesised capping agent for AuNPs as well as a crosslinker that binds functionalised AuNPs to the reactive sites of wool. In addition to achieving the project aims, my work produced three new systems of colloidal gold in aqueous medium which stand out due to their properties. Specifically, these properties were: (1) being stable without significant electrostatic or steric stabilisation, (2) having a unique surface functionalisation allowing for selective chemistry, and (3) having an intense blue colour as a result of controlling the AuNP shape during synthesis. All three systems show application potential for wool colouration, ligand exchange reactions, surface-enhanced Raman spectroscopy (SERS), and in the field of biomedicine.</p>

2021 ◽  
Author(s):  
◽  
Andrea Kolb

<p>Our research group, led by Professor J. H. Johnston, has developed a novel approach for dyeing merino wool with nanogold [gold nanoparticles (AuNPs)] by coupling the chemistry of gold with that of wool fibres. This utilises the plasmonic properties of nanogold to create attractive fabric colours ranging from pink to purple to grey. The newly created fabric benefits from the synergistic effect of the unique properties of strong merino wool and valuable gold, i.e. the innovative product is intensely coloured, colour fast, naturally hydrophobic, anti-microbial, anti-static as well as having first-rate wearing comfort. This innovation has attracted substantial interest from industry resulting in the collaboration of our research group with leading fabric manufacturers and designers. However, the colour range of this unique high-value product is limited. It was desirable to enlarge the colour range by developing new strategies to create wash fast nanogold–wool composites with a broad colour spectrum. Thus my research aimed to identify and understand the fundamental principles that govern the formation of nanogold–wool composites. Based on the derived knowledge, it was aimed to develop a methodology to covalently link pre-synthesised AuNPs of various colours to the surface of New Zealand merino wool fibres in order to obtain wash fast nanogold–wool composites with a broad colour spectrum. This involved the synthesis, functionalisation and characterisation of colloidal AuNPs, and their application as colourants for wool. The methodology followed three general steps: (1) synthesis of colloidal gold, (2) preparation of the wool surface for the colouring processes, and (3) production of nanogold–wool composites. Each work stage was accompanied by thorough analysis and characterisation of the intermediate and final products. Studying colloidal gold systems and nanogold–wool composites which were previously reported provided the insights that were necessary to develop new methodologies to strongly link AuNPs to wool. For instance, nanogold stabilised by oleylamine produces especially bright pink nanogold–wool composites; however, the AuNP–wool bond is relatively weak. Hence, several AuNP–wool bond types were intensively studied, and as a result of combining the knowledge gained, two approaches were developed to provide a proof-of-concept for the creation of wash fast nanogold–wool composites. These approaches involved a specifically designed, in-house-synthesised capping agent for AuNPs as well as a crosslinker that binds functionalised AuNPs to the reactive sites of wool. In addition to achieving the project aims, my work produced three new systems of colloidal gold in aqueous medium which stand out due to their properties. Specifically, these properties were: (1) being stable without significant electrostatic or steric stabilisation, (2) having a unique surface functionalisation allowing for selective chemistry, and (3) having an intense blue colour as a result of controlling the AuNP shape during synthesis. All three systems show application potential for wool colouration, ligand exchange reactions, surface-enhanced Raman spectroscopy (SERS), and in the field of biomedicine.</p>


2019 ◽  
Vol 9 (6) ◽  
pp. 1135 ◽  
Author(s):  
Anastasiia Merdalimova ◽  
Vasiliy Chernyshev ◽  
Daniil Nozdriukhin ◽  
Polina Rudakovskaya ◽  
Dmitry Gorin ◽  
...  

The concept of liquid biopsy has emerged as a novel approach for cancer screening, which is based on the analysis of circulating cancer biomarkers in body fluids. Among the various circulating cancer biomarkers, including Food and Drug Administration (FDA)-approved circulating tumor cells (CTC) and circulating tumor DNA (ctDNA), exosomes have attracted tremendous attention due to their ability to diagnose cancer in its early stages with high efficiency. Recently, surface-enhanced Raman spectroscopy (SERS) has been applied for the detection of cancer exosomes due to its high sensitivity, specificity, and multiplexing capability. In this article, we review recent progress in the development of SERS-based technologies for in vitro identification of circulating cancer exosomes. The accent is made on the detection strategies and interpretation of the SERS data. The problems of detecting cancer-derived exosomes from patient samples and future perspectives of SERS-based diagnostics are also discussed.


2017 ◽  
Author(s):  
Caitlin S. DeJong ◽  
David I. Wang ◽  
Aleksandr Polyakov ◽  
Anita Rogacs ◽  
Steven J. Simske ◽  
...  

Through the direct detection of bacterial volatile organic compounds (VOCs), via surface enhanced Raman spectroscopy (SERS), we report here a reconfigurable assay for the identification and monitoring of bacteria. We demonstrate differentiation between highly clinically relevant organisms: <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, and <i>Serratia marcescens</i>. This is the first differentiation of bacteria via SERS of bacterial VOC signatures. The assay also detected as few as 10 CFU/ml of <i>E. coli</i> in under 12 hrs, and detected <i>E. coli</i> from whole human blood and human urine in 16 hrs at clinically relevant concentrations of 10<sup>3</sup> CFU/ml and 10<sup>4</sup> CFU/ml, respectively. In addition, the recent emergence of portable Raman spectrometers uniquely allows SERS to bring VOC detection to point-of-care settings for diagnosing bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document