scholarly journals Genetic Programming for Biomarker Detection in Classification of Mass Spectrometry Data

2021 ◽  
Author(s):  
◽  
Soha Ahmed

<p>Mass spectrometry (MS) is currently the most commonly used technology in biochemical research for proteomic analysis. The primary goal of proteomic profiling using mass spectrometry is the classification of samples from different experimental states. To classify the MS samples, the identification of protein or peptides (biomarker detection) that are expressed differently between the classes, is required.  However, due to the high dimensionality of the data and the small number of samples, classification of MS data is extremely challenging. Another important aspect of biomarker detection is the verification of the detected biomarker that acts as an intermediate step before passing these biomarkers to the experimental validation stage.  Biomarker detection aims at altering the input space of the learning algorithm for improving classification of proteomic or metabolomic data. This task is performed through feature manipulation.  Feature manipulation consists of three aspects: feature ranking, feature selection, and feature construction. Genetic programming (GP) is an evolutionary computation algorithm that has the intrinsic capability for the three aspects of feature manipulation. The ability of GP for feature manipulation in proteomic biomarker discovery has not been fully investigated. This thesis, therefore, proposes an embedded methodology for these three aspects of feature manipulation in high dimensional MS data using GP. The thesis also presents a method for biomarker verification, using GP. The thesis investigates the use of GP for both single-objective and multi-objective feature selection and construction.  In feature ranking, the thesis proposes a GP-based method for ranking subsets of features by using GP as an ensemble approach. The proposed algorithm uses GP capability to combine the advantages of different feature ranking metrics and evolve a new ranking scheme for the subset of the features selected from the top ranked features. The capability of GP as a classifier is also investigated by this method. The results show that GP can select a smaller number of features and provide a better ranking of the selected features, which can improve the classification performance of five classifiers.  In feature construction, this thesis proposes a novel multiple feature construction method, which uses a single GP tree to generate a new set of high-level features from the original set of selected features. The results show that the proposed new algorithm outperforms two feature selection algorithms.  In feature selection, the thesis introduces the first GP multi-objective method for biomarker detection, which simultaneously increase the classification accuracy and reduce the number of detected features. The proposed multi-objective method can obtain better subsets of features than the single-objective algorithm and two traditional multi-objective approaches for feature selection. This thesis also develops the first multi-objective multiple feature construction algorithm for MS data. The proposed method aims at both maximising the classification performance and minimizing the cardinality of the constructed new high-level features. The results show that GP can dis- cover the complex relationships between the features and can significantly improve classification performance and reduce the cardinality.  For biomarker verification, the thesis proposes the first GP biomarker verification method through measuring the peptide detectability. The method solves the imbalance problem in the data and shows improvement over the benchmark algorithms. Also, the algorithm outperforms a well-known peptide detection method. The thesis also introduces a new GP method for alignment of MS data as a preprocessing stage, which will further help in improving the biomarker detection process.</p>

2021 ◽  
Author(s):  
◽  
Soha Ahmed

<p>Mass spectrometry (MS) is currently the most commonly used technology in biochemical research for proteomic analysis. The primary goal of proteomic profiling using mass spectrometry is the classification of samples from different experimental states. To classify the MS samples, the identification of protein or peptides (biomarker detection) that are expressed differently between the classes, is required.  However, due to the high dimensionality of the data and the small number of samples, classification of MS data is extremely challenging. Another important aspect of biomarker detection is the verification of the detected biomarker that acts as an intermediate step before passing these biomarkers to the experimental validation stage.  Biomarker detection aims at altering the input space of the learning algorithm for improving classification of proteomic or metabolomic data. This task is performed through feature manipulation.  Feature manipulation consists of three aspects: feature ranking, feature selection, and feature construction. Genetic programming (GP) is an evolutionary computation algorithm that has the intrinsic capability for the three aspects of feature manipulation. The ability of GP for feature manipulation in proteomic biomarker discovery has not been fully investigated. This thesis, therefore, proposes an embedded methodology for these three aspects of feature manipulation in high dimensional MS data using GP. The thesis also presents a method for biomarker verification, using GP. The thesis investigates the use of GP for both single-objective and multi-objective feature selection and construction.  In feature ranking, the thesis proposes a GP-based method for ranking subsets of features by using GP as an ensemble approach. The proposed algorithm uses GP capability to combine the advantages of different feature ranking metrics and evolve a new ranking scheme for the subset of the features selected from the top ranked features. The capability of GP as a classifier is also investigated by this method. The results show that GP can select a smaller number of features and provide a better ranking of the selected features, which can improve the classification performance of five classifiers.  In feature construction, this thesis proposes a novel multiple feature construction method, which uses a single GP tree to generate a new set of high-level features from the original set of selected features. The results show that the proposed new algorithm outperforms two feature selection algorithms.  In feature selection, the thesis introduces the first GP multi-objective method for biomarker detection, which simultaneously increase the classification accuracy and reduce the number of detected features. The proposed multi-objective method can obtain better subsets of features than the single-objective algorithm and two traditional multi-objective approaches for feature selection. This thesis also develops the first multi-objective multiple feature construction algorithm for MS data. The proposed method aims at both maximising the classification performance and minimizing the cardinality of the constructed new high-level features. The results show that GP can dis- cover the complex relationships between the features and can significantly improve classification performance and reduce the cardinality.  For biomarker verification, the thesis proposes the first GP biomarker verification method through measuring the peptide detectability. The method solves the imbalance problem in the data and shows improvement over the benchmark algorithms. Also, the algorithm outperforms a well-known peptide detection method. The thesis also introduces a new GP method for alignment of MS data as a preprocessing stage, which will further help in improving the biomarker detection process.</p>


2021 ◽  
Author(s):  
Binh Tran ◽  
Bing Xue ◽  
Mengjie Zhang

Classification on high-dimensional data with thousands to tens of thousands of dimensions is a challenging task due to the high dimensionality and the quality of the feature set. The problem can be addressed by using feature selection to choose only informative features or feature construction to create new high-level features. Genetic programming (GP) using a tree-based representation can be used for both feature construction and implicit feature selection. This work presents a comprehensive study to investigate the use of GP for feature construction and selection on high-dimensional classification problems. Different combinations of the constructed and/or selected features are tested and compared on seven high-dimensional gene expression problems, and different classification algorithms are used to evaluate their performance. The results show that the constructed and/or selected feature sets can significantly reduce the dimensionality and maintain or even increase the classification accuracy in most cases. The cases with overfitting occurred are analysed via the distribution of features. Further analysis is also performed to show why the constructed feature can achieve promising classification performance. This is a post-peer-review, pre-copyedit version of an article published in 'Memetic Computing'. The final authenticated version is available online at: https://doi.org/10.1007/s12293-015-0173-y. The following terms of use apply: https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use.


2021 ◽  
Author(s):  
Binh Tran ◽  
Bing Xue ◽  
Mengjie Zhang

Classification on high-dimensional data with thousands to tens of thousands of dimensions is a challenging task due to the high dimensionality and the quality of the feature set. The problem can be addressed by using feature selection to choose only informative features or feature construction to create new high-level features. Genetic programming (GP) using a tree-based representation can be used for both feature construction and implicit feature selection. This work presents a comprehensive study to investigate the use of GP for feature construction and selection on high-dimensional classification problems. Different combinations of the constructed and/or selected features are tested and compared on seven high-dimensional gene expression problems, and different classification algorithms are used to evaluate their performance. The results show that the constructed and/or selected feature sets can significantly reduce the dimensionality and maintain or even increase the classification accuracy in most cases. The cases with overfitting occurred are analysed via the distribution of features. Further analysis is also performed to show why the constructed feature can achieve promising classification performance. This is a post-peer-review, pre-copyedit version of an article published in 'Memetic Computing'. The final authenticated version is available online at: https://doi.org/10.1007/s12293-015-0173-y. The following terms of use apply: https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use.


2020 ◽  
Vol 36 (16) ◽  
pp. 4423-4431
Author(s):  
Wenbo Xu ◽  
Yan Tian ◽  
Siye Wang ◽  
Yupeng Cui

Abstract Motivation The classification of high-throughput protein data based on mass spectrometry (MS) is of great practical significance in medical diagnosis. Generally, MS data are characterized by high dimension, which inevitably leads to prohibitive cost of computation. To solve this problem, one-bit compressed sensing (CS), which is an extreme case of quantized CS, has been employed on MS data to select important features with low dimension. Though enjoying remarkably reduction of computation complexity, the current one-bit CS method does not consider the unavoidable noise contained in MS dataset, and does not exploit the inherent structure of the underlying MS data. Results We propose two feature selection (FS) methods based on one-bit CS to deal with the noise and the underlying block-sparsity features, respectively. In the first method, the FS problem is modeled as a perturbed one-bit CS problem, where the perturbation represents the noise in MS data. By iterating between perturbation refinement and FS, this method selects the significant features from noisy data. The second method formulates the problem as a perturbed one-bit block CS problem and selects the features block by block. Such block extraction is due to the fact that the significant features in the first method usually cluster in groups. Experiments show that, the two proposed methods have better classification performance for real MS data when compared with the existing method, and the second one outperforms the first one. Availability and implementation The source code of our methods is available at: https://github.com/tianyan8023/OBCS. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
◽  
Kourosh Neshatian

<p><b>Feature manipulation refers to the process by which the input space of a machine learning task is altered in order to improve the learning quality and performance. Three major aspects of feature manipulation are feature construction, feature ranking and feature selection. This thesis proposes a new filter-based methodology for feature manipulation in classification problems using genetic programming (GP). The goal is to modify the input representation of classification problems in order to improve classification performance and reduce the complexity of classification models. The thesis regards classification problems as a collection of variables including conditional variables (input features) and decision variables (target class labels). GP is used to discover the relationships between these variables. The types of relationship and the ways in which they are discovered vary with the three aspects of feature manipulation.</b></p> <p>In feature construction, the thesis proposes a GP-based method to construct high-level features in the form of functions of original input features. The functions are evolved by GP using an entropy-based fitness function that maximises the purity of class intervals. Unlike existing algorithms, the proposed GP-based method constructs multiple features and it can effectively perform transformational dimensionality reduction, using only a small number of GP-constructed features while preserving good classification performance.</p> <p>In feature ranking, the thesis proposes two GP-based methods for ranking single features and subsets of features. In single-feature ranking, the proposed method measures the influence of individual features on the classification performance by using GP to evolve a collection of weak classification models, and then measures the contribution of input features to the making of good models. In ranking of subsets of features, a virtual structure for GP trees and a new binary relevance function is proposed to measure the relationship between a subset of features and the target class labels. It is observed that the proposed method can discover complex relationships - such as multi-modal class distributions and multivariate correlations - that cannot be detected by traditional methods. In feature selection, the thesis provides a novel multi-objective GP-based approach to measuring the goodness of subsets of features. The subsets are evaluated based on their cardinality and their relationship to target class labels. The selection is performed by choosing a subset of features from a GP-discovered Pareto front containing suboptimal solutions (subsets). The thesis also proposes a novel method for measuring the redundancy between input features. It is used to select a subset of relevant features that do not exhibit redundancy with respect to each other. It is found that in all three aspects of feature manipulation, the proposed GP-based methodology is effective in discovering relationships between the features of a classification task. In the case of feature construction, the proposed GP-based methods evolve functions of conditional variables that can significantly improve the classification performance and reduce the complexity of the learned classifiers. In the case of feature ranking, the proposed GP-based methods can find complex relationships between conditional variables and decision variables. The resulted ranking shows a strong linear correlation with the actual classification performance. In the case of feature selection, the proposed GP-based method can find a set of sub-optimal subsets of features which provids a trade-off between the number of features and their relevance to the classification task. The proposed redundancy removal method can remove redundant features from a set of features. Both proposed feature selection methods can find an optimal subset of features that yields significantly better classification performance with a much smaller number of features than conventional classification methods.</p>


2021 ◽  
Author(s):  
◽  
~ Qurrat Ul Ain

<p>Skin image classification involves the development of computational methods for solving problems such as cancer detection in lesion images, and their use for biomedical research and clinical care. Such methods aim at extracting relevant information or knowledge from skin images that can significantly assist in the early detection of disease. Skin images are enormous, and come with various artifacts that hinder effective feature extraction leading to inaccurate classification. Feature selection and feature construction can significantly reduce the amount of data while improving classification performance by selecting prominent features and constructing high-level features. Existing approaches mostly rely on expert intervention and follow multiple stages for pre-processing, feature extraction, and classification, which decreases the reliability, and increases the computational complexity. Since good generalization accuracy is not always the primary objective, clinicians are also interested in analyzing specific features such as pigment network, streaks, and blobs responsible for developing the disease; interpretable methods are favored. In Evolutionary Computation, Genetic Programming (GP) can automatically evolve an interpretable model and address the curse of dimensionality (through feature selection and construction). GP has been successfully applied to many areas, but its potential for feature selection, feature construction, and classification in skin images has not been thoroughly investigated. The overall goal of this thesis is to develop a new GP approach to skin image classification by utilizing GP to evolve programs that are capable of automatically selecting prominent image features, constructing new high level features, interpreting useful image features which can help dermatologist to diagnose a type of cancer, and are robust to processing skin images captured from specialized instruments and standard cameras. This thesis focuses on utilizing a wide range of texture, color, frequency-based, local, and global image properties at the terminal nodes of GP to classify skin cancer images from multiple modalities effectively. This thesis develops new two-stage GP methods using embedded and wrapper feature selection and construction approaches to automatically generating a feature vector of selected and constructed features for classification. The results show that wrapper approach outperforms the embedded approach, the existing baseline GP and other machine learning methods, but the embedded approach is faster than the wrapper approach. This thesis develops a multi-tree GP based embedded feature selection approach for melanoma detection using domain specific and domain independent features. It explores suitable crossover and mutation operators to evolve GP classifiers effectively and further extends this approach using a weighted fitness function. The results show that these multi-tree approaches outperformed single tree GP and other classification methods. They identify that a specific feature extraction method extracts most suitable features for particular images taken from a specific optical instrument. This thesis develops the first GP method utilizing frequency-based wavelet features, where the wrapper based feature selection and construction methods automatically evolve useful constructed features to improve the classification performance. The results show the evidence of successful feature construction by significantly outperforming existing GP approaches, state-of-the-art CNN, and other classification methods. This thesis develops a GP approach to multiple feature construction for ensemble learning in classification. The results show that the ensemble method outperformed existing GP approaches, state-of-the-art skin image classification, and commonly used ensemble methods. Further analysis of the evolved constructed features identified important image features that can potentially help the dermatologist identify further medical procedures in real-world situations.</p>


2021 ◽  
Author(s):  
◽  
~ Qurrat Ul Ain

<p>Skin image classification involves the development of computational methods for solving problems such as cancer detection in lesion images, and their use for biomedical research and clinical care. Such methods aim at extracting relevant information or knowledge from skin images that can significantly assist in the early detection of disease. Skin images are enormous, and come with various artifacts that hinder effective feature extraction leading to inaccurate classification. Feature selection and feature construction can significantly reduce the amount of data while improving classification performance by selecting prominent features and constructing high-level features. Existing approaches mostly rely on expert intervention and follow multiple stages for pre-processing, feature extraction, and classification, which decreases the reliability, and increases the computational complexity. Since good generalization accuracy is not always the primary objective, clinicians are also interested in analyzing specific features such as pigment network, streaks, and blobs responsible for developing the disease; interpretable methods are favored. In Evolutionary Computation, Genetic Programming (GP) can automatically evolve an interpretable model and address the curse of dimensionality (through feature selection and construction). GP has been successfully applied to many areas, but its potential for feature selection, feature construction, and classification in skin images has not been thoroughly investigated. The overall goal of this thesis is to develop a new GP approach to skin image classification by utilizing GP to evolve programs that are capable of automatically selecting prominent image features, constructing new high level features, interpreting useful image features which can help dermatologist to diagnose a type of cancer, and are robust to processing skin images captured from specialized instruments and standard cameras. This thesis focuses on utilizing a wide range of texture, color, frequency-based, local, and global image properties at the terminal nodes of GP to classify skin cancer images from multiple modalities effectively. This thesis develops new two-stage GP methods using embedded and wrapper feature selection and construction approaches to automatically generating a feature vector of selected and constructed features for classification. The results show that wrapper approach outperforms the embedded approach, the existing baseline GP and other machine learning methods, but the embedded approach is faster than the wrapper approach. This thesis develops a multi-tree GP based embedded feature selection approach for melanoma detection using domain specific and domain independent features. It explores suitable crossover and mutation operators to evolve GP classifiers effectively and further extends this approach using a weighted fitness function. The results show that these multi-tree approaches outperformed single tree GP and other classification methods. They identify that a specific feature extraction method extracts most suitable features for particular images taken from a specific optical instrument. This thesis develops the first GP method utilizing frequency-based wavelet features, where the wrapper based feature selection and construction methods automatically evolve useful constructed features to improve the classification performance. The results show the evidence of successful feature construction by significantly outperforming existing GP approaches, state-of-the-art CNN, and other classification methods. This thesis develops a GP approach to multiple feature construction for ensemble learning in classification. The results show that the ensemble method outperformed existing GP approaches, state-of-the-art skin image classification, and commonly used ensemble methods. Further analysis of the evolved constructed features identified important image features that can potentially help the dermatologist identify further medical procedures in real-world situations.</p>


2021 ◽  
Author(s):  
◽  
Kourosh Neshatian

<p><b>Feature manipulation refers to the process by which the input space of a machine learning task is altered in order to improve the learning quality and performance. Three major aspects of feature manipulation are feature construction, feature ranking and feature selection. This thesis proposes a new filter-based methodology for feature manipulation in classification problems using genetic programming (GP). The goal is to modify the input representation of classification problems in order to improve classification performance and reduce the complexity of classification models. The thesis regards classification problems as a collection of variables including conditional variables (input features) and decision variables (target class labels). GP is used to discover the relationships between these variables. The types of relationship and the ways in which they are discovered vary with the three aspects of feature manipulation.</b></p> <p>In feature construction, the thesis proposes a GP-based method to construct high-level features in the form of functions of original input features. The functions are evolved by GP using an entropy-based fitness function that maximises the purity of class intervals. Unlike existing algorithms, the proposed GP-based method constructs multiple features and it can effectively perform transformational dimensionality reduction, using only a small number of GP-constructed features while preserving good classification performance.</p> <p>In feature ranking, the thesis proposes two GP-based methods for ranking single features and subsets of features. In single-feature ranking, the proposed method measures the influence of individual features on the classification performance by using GP to evolve a collection of weak classification models, and then measures the contribution of input features to the making of good models. In ranking of subsets of features, a virtual structure for GP trees and a new binary relevance function is proposed to measure the relationship between a subset of features and the target class labels. It is observed that the proposed method can discover complex relationships - such as multi-modal class distributions and multivariate correlations - that cannot be detected by traditional methods. In feature selection, the thesis provides a novel multi-objective GP-based approach to measuring the goodness of subsets of features. The subsets are evaluated based on their cardinality and their relationship to target class labels. The selection is performed by choosing a subset of features from a GP-discovered Pareto front containing suboptimal solutions (subsets). The thesis also proposes a novel method for measuring the redundancy between input features. It is used to select a subset of relevant features that do not exhibit redundancy with respect to each other. It is found that in all three aspects of feature manipulation, the proposed GP-based methodology is effective in discovering relationships between the features of a classification task. In the case of feature construction, the proposed GP-based methods evolve functions of conditional variables that can significantly improve the classification performance and reduce the complexity of the learned classifiers. In the case of feature ranking, the proposed GP-based methods can find complex relationships between conditional variables and decision variables. The resulted ranking shows a strong linear correlation with the actual classification performance. In the case of feature selection, the proposed GP-based method can find a set of sub-optimal subsets of features which provids a trade-off between the number of features and their relevance to the classification task. The proposed redundancy removal method can remove redundant features from a set of features. Both proposed feature selection methods can find an optimal subset of features that yields significantly better classification performance with a much smaller number of features than conventional classification methods.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yizhe Wang ◽  
Cunqian Feng ◽  
Yongshun Zhang ◽  
Sisan He

Precession is a common micromotion form of space targets, introducing additional micro-Doppler (m-D) modulation into the radar echo. Effective classification of space targets is of great significance for further micromotion parameter extraction and identification. Feature extraction is a key step during the classification process, largely influencing the final classification performance. This paper presents two methods for classifying different types of space precession targets from the HRRPs. We first establish the precession model of space targets and analyze the scattering characteristics and then compute electromagnetic data of the cone target, cone-cylinder target, and cone-cylinder-flare target. Experimental results demonstrate that the support vector machine (SVM) using histograms of oriented gradient (HOG) features achieves a good result, whereas the deep convolutional neural network (DCNN) obtains a higher classification accuracy. DCNN combines the feature extractor and the classifier itself to automatically mine the high-level signatures of HRRPs through a training process. Besides, the efficiency of the two classification processes are compared using the same dataset.


Sign in / Sign up

Export Citation Format

Share Document