scholarly journals Investigating the Quantitative Trait Loci Contributing to Individual Variation in Drug Response

2021 ◽  
Author(s):  
◽  
Christina Roberts

<p>Individuals often display a wide variety of phenotypic responses to drug treatment, in terms of both efficacy and side effects. Part of this variation appears to have an individual genetic basis which is not well understood. It is well established in the literature that most traits, including drug response, are not controlled by a single gene, but rather arise from multiple loci known as quantitative trait loci (QTL). This thesis investigated the genetic basis of individual variability of response to two antifungal agents whose targets are known—namely benomyl (an industrial fungicide) and ketoconazole (a medicinal fungicide). A collection of 33 Saccharomyces cerevisiae yeast strains, sourced from the Saccharomyces Genome Resequencing Project (SGRP, Sanger Institute) was used to model individuals as these strains carry natural variation in terms of single nucleotide polymorphisms (SNPs) akin to human individuals.  Drug response measurements using serial spot dilution and high-throughput 384-colony robotic pinning screens were used to select four SGRP strains on the basis of drug resistance or sensitivity relative to the laboratory strain BY. These were L-1374 that was sensitive to benomyl compared to BY; UWOPS87-2421 that was resistant to benomyl compared to BY; Y12 that was sensitive to ketoconazole compared to BY; DBVPG6044 that was resistant ketoconazole compared to BY. The four strains described were crossed individually with the BY laboratory strain and the resultant diploids were sporulated to obtain meiotic recombinant offspring. Spores were then subjected ten cycles of intercrossing in order to obtain advanced intercross lines (AILs); these contain reduced linkage disequilibrium between marker and trait genomic position and act to refine the localising potential of the QTL. The segregant offspring produced following the setup of AIL were subjected to studies to investigate the heritability of drug response to intermediate and high dose of benomyl or ketoconazole. It was concluded that in each of the crosses trialled, the drug response was a multigenic trait. Furthermore, the broad sense heritability estimates were high (L-1374×BY: H² = 0.91 and 0.92 for response to 75 μM and 137.5 μM benomyl respectively; UWOPS87-2421×BY: H² = 0.75 and 0.87 for response to 150 μM and 250 μM benomyl; Y12×BY: H² = 0.9 and 0.88 for response to 60 μM and 100 μM ketoconazole). This indicates that most of the variance seen in drug response arises due to genetic variance. Additionally, the relative drug sensitivity in each of the crosses trialled was found to be either a dominant trait (either partially or fully so).  Finally QTL mapping through next generation sequencing bulk segregant analysis (NGS-BSA) confirmed the multigenic nature of the drug response in the selected strains. The effect of intermediate versus high dose drug treatment revealed that the QTL network is largely conserved between treatment regimens (L-1374×BY cross: three and five QTL upon treatment with 30 μM and 50 μM benomyl respectively; UWOPS87-2421×BY cross: nine and 18 QTL upon treatment with 45 μM and 80 μM of benomyl; Y12×BY cross: 41 and 56 QTL for response to 11.5 μM and 15 μM of ketoconazole; DBVPG6044×BY cross: 12 and 10 QTL for the response to 25 μM and 65 μM ketoconazole). In order to investigate the contribution of individual variation to drug response, the QTL network of the sensitive and the resistant strain for each drug were compared. It was revealed that although there is a conserved core of QTL for response to benomyl and ketoconazole respectively, the individual strains possess a considerable number of strain-specific QTL. This suggested that individual variation may indeed play a significant role in drug response. Analysis of the top-ranking QTL (in terms of LOD score) for each of the four strains revealed that each of them harboured genes that have literature-supported relationships to their relevant drug.  This thesis presents a significant contribution to existing literature in terms of elucidating the QTL network underlying individual response to benomyl and ketoconazole. The findings from this study have practical potential to provide improved insight into factors that can produce antifungal resistance (a growing and significant clinical problem). Furthermore, it provides insight into better therapeutic regimens that can improve medicinal treatment for individuals.</p>

2021 ◽  
Author(s):  
◽  
Christina Roberts

<p>Individuals often display a wide variety of phenotypic responses to drug treatment, in terms of both efficacy and side effects. Part of this variation appears to have an individual genetic basis which is not well understood. It is well established in the literature that most traits, including drug response, are not controlled by a single gene, but rather arise from multiple loci known as quantitative trait loci (QTL). This thesis investigated the genetic basis of individual variability of response to two antifungal agents whose targets are known—namely benomyl (an industrial fungicide) and ketoconazole (a medicinal fungicide). A collection of 33 Saccharomyces cerevisiae yeast strains, sourced from the Saccharomyces Genome Resequencing Project (SGRP, Sanger Institute) was used to model individuals as these strains carry natural variation in terms of single nucleotide polymorphisms (SNPs) akin to human individuals.  Drug response measurements using serial spot dilution and high-throughput 384-colony robotic pinning screens were used to select four SGRP strains on the basis of drug resistance or sensitivity relative to the laboratory strain BY. These were L-1374 that was sensitive to benomyl compared to BY; UWOPS87-2421 that was resistant to benomyl compared to BY; Y12 that was sensitive to ketoconazole compared to BY; DBVPG6044 that was resistant ketoconazole compared to BY. The four strains described were crossed individually with the BY laboratory strain and the resultant diploids were sporulated to obtain meiotic recombinant offspring. Spores were then subjected ten cycles of intercrossing in order to obtain advanced intercross lines (AILs); these contain reduced linkage disequilibrium between marker and trait genomic position and act to refine the localising potential of the QTL. The segregant offspring produced following the setup of AIL were subjected to studies to investigate the heritability of drug response to intermediate and high dose of benomyl or ketoconazole. It was concluded that in each of the crosses trialled, the drug response was a multigenic trait. Furthermore, the broad sense heritability estimates were high (L-1374×BY: H² = 0.91 and 0.92 for response to 75 μM and 137.5 μM benomyl respectively; UWOPS87-2421×BY: H² = 0.75 and 0.87 for response to 150 μM and 250 μM benomyl; Y12×BY: H² = 0.9 and 0.88 for response to 60 μM and 100 μM ketoconazole). This indicates that most of the variance seen in drug response arises due to genetic variance. Additionally, the relative drug sensitivity in each of the crosses trialled was found to be either a dominant trait (either partially or fully so).  Finally QTL mapping through next generation sequencing bulk segregant analysis (NGS-BSA) confirmed the multigenic nature of the drug response in the selected strains. The effect of intermediate versus high dose drug treatment revealed that the QTL network is largely conserved between treatment regimens (L-1374×BY cross: three and five QTL upon treatment with 30 μM and 50 μM benomyl respectively; UWOPS87-2421×BY cross: nine and 18 QTL upon treatment with 45 μM and 80 μM of benomyl; Y12×BY cross: 41 and 56 QTL for response to 11.5 μM and 15 μM of ketoconazole; DBVPG6044×BY cross: 12 and 10 QTL for the response to 25 μM and 65 μM ketoconazole). In order to investigate the contribution of individual variation to drug response, the QTL network of the sensitive and the resistant strain for each drug were compared. It was revealed that although there is a conserved core of QTL for response to benomyl and ketoconazole respectively, the individual strains possess a considerable number of strain-specific QTL. This suggested that individual variation may indeed play a significant role in drug response. Analysis of the top-ranking QTL (in terms of LOD score) for each of the four strains revealed that each of them harboured genes that have literature-supported relationships to their relevant drug.  This thesis presents a significant contribution to existing literature in terms of elucidating the QTL network underlying individual response to benomyl and ketoconazole. The findings from this study have practical potential to provide improved insight into factors that can produce antifungal resistance (a growing and significant clinical problem). Furthermore, it provides insight into better therapeutic regimens that can improve medicinal treatment for individuals.</p>


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1307-1315
Author(s):  
Daibin Zhong ◽  
Aditi Pai ◽  
Guiyun Yan

Abstract Parasites have profound effects on host ecology and evolution, and the effects of parasites on host ecology are often influenced by the magnitude of host susceptibility to parasites. Many parasites have complex life cycles that require intermediate hosts for their transmission, but little is known about the genetic basis of the intermediate host's susceptibility to these parasites. This study examined the genetic basis of susceptibility to a tapeworm (Hymenolepis diminuta) in the red flour beetle (Tribolium castaneum) that serves as an intermediate host in its transmission. Quantitative trait loci (QTL) mapping experiments were conducted with two independent segregating populations using amplified fragment length polymorphism (AFLP) markers and randomly amplified polymorphic DNA (RAPD) markers. A total of five QTL that significantly affected beetle susceptibility were identified in the two reciprocal crosses. Two common QTL on linkage groups 3 and 6 were identified in both crosses with similar effects on the phenotype, and three QTL were unique to each cross. In one cross, the three main QTL accounted for 29% of the total phenotypic variance and digenic epistasis explained 39% of the variance. In the second cross, the four main QTL explained 62% of the variance and digenic epistasis accounted for only 5% of the variance. The actions of these QTL were either overdominance or underdominance. Our results suggest that the polygenic nature of beetle susceptibility to the parasites and epistasis are important genetic mechanisms for the maintenance of variation within or among beetle strains in susceptibility to tapeworm infection.


2004 ◽  
Vol 4 (5) ◽  
pp. 315-321 ◽  
Author(s):  
Y Gong ◽  
Z Wang ◽  
T Liu ◽  
W Zhao ◽  
Y Zhu ◽  
...  

PLoS Genetics ◽  
2012 ◽  
Vol 8 (10) ◽  
pp. e1003000 ◽  
Author(s):  
Athma A. Pai ◽  
Carolyn E. Cain ◽  
Orna Mizrahi-Man ◽  
Sherryl De Leon ◽  
Noah Lewellen ◽  
...  

2012 ◽  
Vol 279 (1747) ◽  
pp. 4551-4558 ◽  
Author(s):  
William E. Bradshaw ◽  
Kevin J. Emerson ◽  
Julian M. Catchen ◽  
William A. Cresko ◽  
Christina M. Holzapfel

Identifying regions of the genome contributing to phenotypic evolution often involves genetic mapping of quantitative traits. The focus then turns to identifying regions of ‘major’ effect, overlooking the observation that traits of ecological or evolutionary relevance usually involve many genes whose individual effects are small but whose cumulative effect is large. Herein, we use the power of fully interfertile natural populations of a single species of mosquito to develop three quantitative trait loci (QTL) maps: one between two post-glacially diverged populations and two between a more ancient and a post-glacial population. All demonstrate that photoperiodic response is genetically a highly complex trait. Furthermore, we show that marker regressions identify apparently ‘non-significant’ regions of the genome not identified by composite interval mapping, that the perception of the genetic basis of adaptive evolution is crucially dependent upon genetic background and that the genetic basis for adaptive evolution of photoperiodic response is highly variable within contemporary populations as well as between anciently diverged populations.


2001 ◽  
Vol 7 (2) ◽  
pp. 159-169 ◽  
Author(s):  
LARRY I. CRAWSHAW ◽  
HELEN L. WALLACE ◽  
ROBIN CHRISTENSEN ◽  
JOHN C. CRABBE

The genetic basis for the effects of ethanol on thermoregulation was investigated by utilizing recombinant inbred mouse strains from C57BL/6J and DBA/2J progenitor strains. Changes in core body temperature (Tc) and the degree of fluctuation of Tc were monitored in male mice following the administration of ethanol in an environment with cyclic changes in ambient temperature (Ta). Changes in Tc were utilized to assess ethanol-induced effects on regulated Tc, whereas fluctuations in Tc were utilized to assess thermoregulatory disruption. Ethanol was administered intraperitoneally at 1.5, 2.5, and 3.5 g/kg for all strains. Change in Tc and increase in tail temperature were also evaluated at 2.5 g/kg ethanol in a constant Ta of 26°C. Associations between the measured physiological responses and previously mapped genetic markers were used to identify quantitative trait loci (QTLs). This established probable chromosome locations for a number of genes for the responses. To our knowledge, this is the first report of QTLs that underlie changes in regulation as well as the disruption of a physiological regulatory system.


HortScience ◽  
2007 ◽  
Vol 42 (5) ◽  
pp. 1207-1211 ◽  
Author(s):  
De-Kun Dong ◽  
Jia-Shu Cao ◽  
Kai Shi ◽  
Le-Cheng Liu

To investigate the genetic basis of heterosis in Brassica rapa, an F2 population was produced from the cross of B. rapa L. subsp. chinensis (L.) Hanelt and B. rapa L. subsp. rapifera Metzg. Trait performances of the F1 hybrid showed evident mid parent heterosis, which varied from 18.55% to 101.62% for the 11 traits investigated. A total of 23 main effect quantitative trait loci (QTLs) were detected for biomass and its component traits, which could explain 4.38% to 47.80% of the phenotypic variance, respectively. Sixty-five percent of these QTLs showed obvious overdominance. Epistasis analysis detected 444 two-locus interactions for the 11 traits at the threshold of P < 0.005. Some of them remained significant when more stringent threshold were set. These results suggested that overdominance and epistasis might play an important role as the genetic basis of heterosis in B. rapa.


Sign in / Sign up

Export Citation Format

Share Document