scholarly journals The State of the Cardiovascular System of Qualified Table Tennis Athletes at the Stage of Competitive Activity

2021 ◽  
Vol 6 (4) ◽  
pp. 231-236
Author(s):  
Ulizko V. M. ◽  
◽  
V. R. Kryzhanivsky ◽  
T. M. Zakharkevich ◽  
I. L. Belyavsky

The condition of the cardiovascular system is one of the important criteria for assessing the impact of sports training on the human body. According to the indicators characterizing the state of the cardiovascular system, it is possible to trace the changes associated with fluctuations in the level of training, as well as to identify signs of overload as early as possible. The study of adaptive reactions of the cardiovascular system in athletes under physical activity is an important indicator for sports practice. The purpose of the study was to investigate the quantitative criteria for assessing the state of the cardiovascular system and approaches to correct the functional state of qualified athletes specializing in table tennis. Materials and methods. Studies of heart rate variability, quantitative and qualitative indicators that sufficiently reflect the autonomic functions of the body were used in order to assess the state of autonomic regulation in highly qualified athletes. Systematic physical activity causes a significant restructuring of the cardiovascular system and leads to morphofunctional changes in the mechanisms of the heart. Depending on the autonomic regulation of heart rhythm, there are different ways of myocardial adaptation processes. The balance of sympathetic and parasympathetic links of autonomic rhythm regulation is reflected in the activation of the left ventricle. Results and discussion. Adaptive changes of the cardiovascular system to competitive and training loads in the competitive period in qualified athletes are characterized by a significant decrease in heart rate (from 84.75±1.74 beats / min to 74.8±0.38 beats / min). In addition, a significantly faster process of restoring heart rate was established after exercise in the group of qualified athletes, compared with athletes of the category 1 at 4 (p >0.05) and 5 (p >0.05) minutes, respectively. According to the indicators of autonomic regulation of heart rhythm, activation of the parasympathetic link prevails in athletes of the category 1 in comparison with qualified athletes activation (according to high-frequency component, p <0.05). Significantly higher rates of individual parts of the body compared to low-skilled athletes were found out: the hormonal system (the indicator responsible for the hormonal part of the body – very low-frequency component) and the nervous system (indicators of the sympathetic nervous system – low frequency component). There are significantly higher values of the magnitude of the heart rate spectrum and high-frequency component at p <0.05, which indicates a higher power of all units of the parasympathetic regulation in the category 1 in relation to masters of sports and candidates masters of sports. Conclusion. Systematic physical activity causes a significant restructuring of the cardiovascular system and leads to morphofunctional changes in the mechanisms of the heart. Depending on the autonomic regulation of heart rhythm, there are different ways of myocardial adaptation processes. The balance of sympathetic and parasympathetic links of autonomic rhythm regulation is reflected in the activation of the left ventricle. The analysis showed that the spectral characteristics of heart rate variability significantly differ between groups of athletes with different dominance that are observed only in terms of high-frequency component, which in turn led to a change in the sympathetic-vagal balance

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yoshie Nakajima ◽  
Naofumi Tanaka ◽  
Tatsuya Mima ◽  
Shin-Ichi Izumi

Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplified. To measure autonomic response, we calculated the high-frequency normalized unit (HFnu), low-frequency normalized unit, and the LF/HF ratio from the heart rate using electrocardiography. We defined the stress recovery ratio as the value obtained after participants listened to music following scratching noise, normalized by the value obtained after participants listened to white noise after the stress noise, in terms of the HFnu, low-frequency normalized unit, LF/HF ratio, and heart rate. Results indicated that high-frequency amplified music had the highest HFnu of the three versions. The stress recovery ratio of HFnu under the high-frequency amplified stimulus was significantly larger than that under the low-frequency stimulus. Our results suggest that the high-frequency component of music plays a greater role in stress relief than low-frequency components.


Author(s):  
T. A. Mityukova ◽  
T. A. Leonova ◽  
S. B. Kohan ◽  
A. A. Sivakov ◽  
O. E. Polulyach

Thyroid hormones can affect the cardiovascular system directly by binding to nuclear thyroid receptors, as well as indirectly by changing the neuro – humoral status of the body as a whole. The aim of the work was to assess the effect of levothyroxine suppressive therapy on the regulation of the heart rate and activity of the sympathoadrenal system, as well as the level of cortisol in the blood of young patients with thyroid cancer. It is shown that the effect of suppressive therapy with levothyroxine on the state of the cardiovascular system is manifested in an increase in the risk of tachycardia and changes in heart rate variability associated with the body mass index. Patients with thyroid cancer had a sharp decrease in normetanephrine (norepinephrine metabolite) in the urine. The levels of metanephrine (metabolite of adrenaline) and dopamine in the urine was dependent on the tonus of the autonomic nervous system and blood pressure. The revealed shifts indicate that against the background of subclinical hyperthyroidism, the mechanisms aimed at stabilizing the heart rate and preventing the effects of hyperstimulation of thyroid and beta-adrenoreceptors of the myocardium are included.


2020 ◽  
Author(s):  
Cristian Aragón-Benedí ◽  
Pablo Oliver-Forniés ◽  
Felice Galluccio ◽  
Ece Yamak Altinpulluk ◽  
Tolga Ergonenc ◽  
...  

Abstract Introduction A balance between the autonomic nervous system and the immune system against SARS-COV-2 is critical in the resolution of its severe macrophage proinflammatory activation. To demonstrate that most severely ill COVID-19 patients will show a depletion of the sympathetic nervous system and a predominance of parasympathetic tone. We hypothesized that a low energy of an autonomic nervous system and a high level of the high frequency component of heart rate variability may be related to the number of proinflammatory cytokines and could have a predictive value in terms of severity and mortality in critically ill patients suffering from COVID-19; Materials and Methods Single-centre, prospective, observational pilot study which included COVID-19 patients admitted to the Surgical Intensive Care Unit. High frequency (HF) component of heart rate variability (HRV) and energy of the autonomic nervous system were recorded using analgesia nociception index monitor (ANI). To estimate the severity and mortality we used the SOFA score and the date of discharge or date of death.Results A total of fourteen patients were finally included in the study. High-frequency component of heart rate variability (ANIm) were higher in the non-survivor group (p = 0.003) and were correlated with higher IL-6 levels (p = 0.002) Energy was inversely correlated with SOFA (p = 0.029). Limit value at 80 of ANIm, predicted mortalities with the sensitivity of 100% and specificity of 85.7%. In the case of energy, a limit value of 0.41 predicted mortality with all predictive values of 71.4%.Conclusion The different components of the spectral analysis of HRV allow us to infer the association between the autonomic nervous system and critically ill patients’ immune system. A low autonomic nervous system activity and a predominance of the parasympathetic system due to sympathetic depletion in patients are associated with a worse prognosis and higher mortality.


Sign in / Sign up

Export Citation Format

Share Document