scholarly journals Heart Rate Variability Using The Analgesia Nociception Index as A Predictor of Illness Severity and Mortality in Critically Ill Patients with COVID-19.

Author(s):  
Cristian Aragón-Benedí ◽  
Pablo Oliver-Forniés ◽  
Felice Galluccio ◽  
Ece Yamak Altinpulluk ◽  
Tolga Ergonenc ◽  
...  

Abstract Introduction A balance between the autonomic nervous system and the immune system against SARS-COV-2 is critical in the resolution of its severe macrophage proinflammatory activation. To demonstrate that most severely ill COVID-19 patients will show a depletion of the sympathetic nervous system and a predominance of parasympathetic tone. We hypothesized that a low energy of an autonomic nervous system and a high level of the high frequency component of heart rate variability may be related to the number of proinflammatory cytokines and could have a predictive value in terms of severity and mortality in critically ill patients suffering from COVID-19; Materials and Methods Single-centre, prospective, observational pilot study which included COVID-19 patients admitted to the Surgical Intensive Care Unit. High frequency (HF) component of heart rate variability (HRV) and energy of the autonomic nervous system were recorded using analgesia nociception index monitor (ANI). To estimate the severity and mortality we used the SOFA score and the date of discharge or date of death.Results A total of fourteen patients were finally included in the study. High-frequency component of heart rate variability (ANIm) were higher in the non-survivor group (p = 0.003) and were correlated with higher IL-6 levels (p = 0.002) Energy was inversely correlated with SOFA (p = 0.029). Limit value at 80 of ANIm, predicted mortalities with the sensitivity of 100% and specificity of 85.7%. In the case of energy, a limit value of 0.41 predicted mortality with all predictive values of 71.4%.Conclusion The different components of the spectral analysis of HRV allow us to infer the association between the autonomic nervous system and critically ill patients’ immune system. A low autonomic nervous system activity and a predominance of the parasympathetic system due to sympathetic depletion in patients are associated with a worse prognosis and higher mortality.

2021 ◽  
Author(s):  
Mateusz Soliński ◽  
Agnieszka Pawlak ◽  
Monika Petelczyc ◽  
Teodor Buchner ◽  
Joanna Aftyka ◽  
...  

Abstract SARS-Cov-2 infection, due to inflammation processes, can affect autonomic nervous system and heart rate variability (HRV) even after disease. Previous studies showed significant changes in HRV parameters in severe (including fatal) infection of SARS-Cov-2. However, HRV analysis for the asymptomatic or mild-symptomatic Covid-19 patients have not been reported. In this study, we suggested that there is an influence of a SARS-Cov-2 infection on the HRV in such patients after weeks form disease.Sixty-five ECG Holter recordings from young (mean age 22.6 ± 3.4 years), physically fit male subjects after 4-6 weeks from the second negative test (considered to be the beginning of recovery) and twenty-six control male subjects (mean age 23.2 ± 2.9 years) were considered in the study. Night-time RR time series were extracted from ECG signals. Selected linear, frequency as well as nonlinear HRV parameters were calculated. We found significant differences in Porta’s symbolic analysis parameters V0 and V2 (p<0.001), α2 (p<0.001), very low frequency component (VLF; p=0.022), and respiratory peak (from PRSA method; p=0.012). These differences may be caused by the changes of the parasympathetic autonomic nervous system as well as by the coupling of respiratory rhythm with heart rate due to an increase in pulmonary arterial vascular resistance.The results suggest that the changes in the HRV, thus autonomic nervous system, are measurable after a few weeks from the beginning of the recovery even in the post-Covid group of young and physically active population. We indicated HRV sensitive markers which could be used in the long-term monitoring of recovered patients.


2021 ◽  
Vol 31 (6) ◽  
pp. 739-748
Author(s):  
Ekaterina V. Udaltsova ◽  
Irina M. Melnikova ◽  
Yury L. Mizernitsky

Differentia! diagnosis of the causes of prolonged cough is difficult because of its multifactorial nature. Diagnostics in case of a cough that persists for more than 4 weeks is based on clinical data, but sometimes it is not enough to establish a diagnosis. This issue led to the development of algorithms based on additional diagnostic criteria evaluated with modern non-invasive functional methods for diagnosing diseases accompanied by a prolonged cough in children.Aim. To determine the differential diagnostic value of the functional parameters of the capillary bed, respiratory tract, and autonomic nervous system in children with diseases accompanied by a prolonged cough (more than 4 weeks).Methods. 238 children aged from 2 to 17 years with prolonged cough were examined in inpatient or outpatient settings and divided into 4 groups: Group 1 (n = 68) - patients with acute or exacerbation of the chronic infectious upper respiratory tract diseases; Group 2 (n = 53) - patients with lower respiratory tract infection; Group 3 (n = 39) - patients with allergic rhinitis; Group 4 (n = 78) - patients with bronchial asthma. All patients underwent standard clinical examination. The diagnostic test also included functional assessment of microcirculation, autonomic nervous system, and respiratory system via computer capillaroscopy of the nail bed, evaluation of heart rate variability, and computer bronchophonography.Results. Patients with allergic diseases of the respiratory tract, especially with asthma, show a change in all parts of the capillary bed and a significant increase in the zone of perivascular edema in combination with parasympathicotonia, in contrast to children with infectious diseases of the respiratory system, who showed a change in microcirculation parameters mainly in the venous capillaries in combination with sympathicotonia. In addition, children with prolonged coughing, regardless of its origin, showed functional changes in the high-frequency acoustic parameters of the respiratory system in the form of an increase in the coefficient of the high-frequency acoustic component of breathing (ф3), which indicates bronchial hyperreactivity.Conclusion. The functional parameters of the microvasculature, autonomic nervous system, and respiratory tract can be used as additional differential diagnostic criteria and included in algorithms for diagnosing respiratory diseases of various origins in childhood, contributing to the early detection of the pathology and timely targeted therapy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249128
Author(s):  
Cristian Aragón-Benedí ◽  
Pablo Oliver-Forniés ◽  
Felice Galluccio ◽  
Ece Yamak Altinpulluk ◽  
Tolga Ergonenc ◽  
...  

Introduction The analysis of heart rate variability (HRV) has proven to be an important tool for the management of autonomous nerve system in both surgical and critically ill patients. We conducted this study to show the different spectral frequency and time domain parameters of HRV as a prospective predictor for critically ill patients, and in particular for COVID-19 patients who are on mechanical ventilation. The hypothesis is that most severely ill COVID-19 patients have a depletion of the sympathetic nervous system and a predominance of parasympathetic activity reflecting the remaining compensatory anti-inflammatory response. Materials and methods A single-center, prospective, observational pilot study which included COVID-19 patients admitted to the Surgical Intensive Care Unit was conducted. The normalized high-frequency component (HFnu), i.e. ANIm, and the standard deviation of RR intervals (SDNN), i.e. Energy, were recorded using the analgesia nociception index monitor (ANI). To estimate the severity and mortality we used the SOFA score and the date of discharge or date of death. Results A total of fourteen patients were finally included in the study. ANIm were higher in the non-survivor group (p = 0.003) and were correlated with higher IL-6 levels (p = 0.020). Energy was inversely correlated with SOFA (p = 0.039) and fewer survival days (p = 0.046). A limit value at 80 of ANIm, predicted mortalities with a sensitivity of 100% and specificity of 85.7%. In the case of Energy, a limit value of 0.41 ms predicted mortality with all predictive values of 71.4%. Conclusion A low autonomic nervous system activity, i.e. low SDNN or Energy, and a predominance of the parasympathetic system, i.e. low HFnu or ANIm, due to the sympathetic depletion in COVID-19 patients are associated with a worse prognosis, higher mortality, and higher IL-6 levels.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 124-124 ◽  
Author(s):  
Suvimol Sangkatumvong ◽  
Rachna Khanna ◽  
Michael Khoo ◽  
Thomas D. Coates

Abstract Sickle cell anemia (SCA) is a devastating disorder that results from a single amino acid substitution in the beta chain of hemoglobin causing polymerization of hemoglobin S when oxygen is removed. This causes normally flexible sickle red cells (SRBC) to become rigid, obstruct vasculature resulting in ischemic organ damage and decreased longevity. Anything which decreases microvasculature flow will promote the sickling process. Inflammation and adhesion of cellular elements to the vessel wall are known to increase the probability of vasoocclusive crisis (VOC). However, the precise event that triggers the cascade called “crisis” is not known. Microvascular flow changes rapidly in response to autonomic signals which can be assessed by measurement of heart rate variability (HRV). These autonomic signals may be the trigger that causes regional decrease in flow and initiates the events resulting in crisis. We have established a model of induced hypoxia in human subjects that was designed to mimic the transient hypoxia occuring naturally during sleep. Calibrated tidal volume, O2 saturation, and electrocardiogram, were recorded up to 200 times per second using a LifeShirt physiological monitoring garment and tissue oxygenation and microvascular blood flow was assessed by laser Doppler flowmetry or magnetic resonance imaging. The report focuses on safety and on HRV results. Subjects breathed 5 breaths of 100% N2 twice separated by a 5 to 10 minte recovery period on up to 4 separate days per subject. 15 SCA had two hypoxic exposures on 38 days. Subjects were contacted 1, 12, and 24 hrs and 7 to 14 days later and symptom questionnaires completed. On only 4 occasions, subjects reported mild transient sicklelike pain that required no or non-narcotic treatment within 24 hours of hypoxia and was deemed possibly related to the hypoxic exposure. About sixty percent of the exposures were associated with lightheadedness lasting 10 to 15 seconds at the nadir of the SpO2. The drop in SpO2 was greater in the SCA patients (p&lt;.05) and lasted 15 to 20 seconds. However, when we used the subjects’ individually measured oxyhemoglobin saturation curve to calculate change in pO2, there was no difference between SCA and normals. Using a novel algorithm we developed which allows second to second comparison of autonomic nervous system (ANS) balance to change in SaO2, we found that the high frequency component of HRV representing parasympathetic (HFP) and low frequency component representing mixed sympathetic activity (LFP) were significantly different between SCA and control (p&lt;.001). SCA patients have a dramatic loss of parasympathetic signal in response to transient hypoxia resulting in significant loss of heart rate variability. These data suggest than SCA patients have a greatly amplified autonomic nervous system response, at least to hypoxia. Since these same ANS signals are also responsible for control of regional microvascular blood flow, it is reasonable to speculate that this hyperactive ANS response leads to regional drop in perfusion which, on a background of hyper-adhesiveness, nitric oxide depletion, inflammation, and dehydration, triggers the sickling cascade. It is important to note that loss of HRV is a powerful predicator of sudden death in several other settings of vascular disease and that 15 to 20% of SCA deaths are otherwise unexplained sudden deaths. These data demonstrate that transient hypoxia can be safely induced in SCA subjects and used to study the relation between hypoxia and physiological responses and SCA patients have a marked abnormality in autonomic nervous system regulation in response to transient hypoxia that likely plays a role in the pathophysiology of this disorder.


2018 ◽  
Vol 6 ◽  
pp. 55-60
Author(s):  
Nataliia Inhula

Aim. Practical cardiology is in constant search for non-invasive vascular risk markers. Heart rhythm reflects the body's response to various stimuli of the external and internal environment. Heart rate variability (HRV) has a prognostic and diagnostic value and allows timely identification of conditions that threaten life. The results of an instrumental examination of heart rhythm fluctuations in patients suffering from chronic cerebral ischemia against the background of angina pectoris of different functional classes allows to evaluate the prognosis of the disease and select the appropriate treatment. Materials and methods. An assessment of the state of the mechanisms of regulation of physiological functions in patients suffering from chronic cerebral ischemia against the background of angina pectoris of different functional classes was obtained according to spectral and temporal analysis of heart rate variability using electrocardiographic monitoring. The spectral characteristics of the heart rate variability were studied: HF (high frequency), LF (low frequency), VLF (very low frequency). Results. Heart rhythm regulation in patients with chronic cerebral ischemia occurred under the influence of neurohumoral mechanisms. The imbalance of functional systems was caused by changes in the autonomic nervous system, which disrupted the normal functioning of the sympathetic and parasympathetic parts. We marked decrease in the activity of the parasympathetic autonomic nervous system, which changed the indices of spectral analysis, while the high-frequency component of the spectrum was characterized by a decrease, while the low-frequency component was characterized by an increase. The progression of stable angina of tension (SAT) in patients with chronic cerebral ischemia (CCI) occurred with disruption of the autonomic nervous system (ANS) and was associated with a shift in the physiological response towards sympathetic activity. This was particularly pronounced in patients in group 2 with CCI on the background of SAT III FC, as the regulatory mechanisms were in a critical state of tension against the background of long-term chronic ischemia, they showed a high level of humoral modulation of regulatory mechanisms, which was manifested by excessive VLF and high-frequency oscillations. Conclusions. A connection was established between the autonomic nervous system and chronic cerebral ischemia, which was expressed in the imbalance of the ANS, associated with reliable signs of the dominant sympathetic system, which was associated with the progression of stable angina of tension.


2016 ◽  
Vol 17 (5) ◽  
pp. 498
Author(s):  
Alyssa Conte Da Silva ◽  
Juliana Falcão Padilha ◽  
Jefferson Luiz Brum Marques ◽  
Cláudia Mirian De Godoy Marques

Introdução: Existem poucos estudos que evidenciam a manipulação vertebral relacionada à modulação autonômica cardíaca. Objetivo: Revisar a literatura sobre os efeitos da manipulação vertebral sobre a modulação autonômica cardíaca. Métodos: Foi realizada uma busca bibliográfica nas bases de dados da saúde Medline, Pubmed e Cinahl, no período correspondido entre setembro e novembro de 2014. Foram utilizados os descritores em inglês Spinal Manipulation, Cardiac Autonomic Modulation, Autonomic Nervous System, Heart Rate Variability, além de associações entre eles. Resultados: Foram encontrados 190 artigos, sendo excluídos 39 por serem repetidos, restando 151. Destes, 124 não se encaixaram nos critérios de inclusão e após leitura crítica e análise dos materiais foram selecionados 7 artigos. Grande parte dos estudos revelou que a manipulação da coluna, independente do segmento, demonstra alterações autonômicas, tanto em nível simpático quanto parassimpático. Conclusão: Existem diferentes metodologias para avaliação da modulação autonômica cardíaca, sendo a Variabilidade da Frequência cardíaca através do eletrocardiograma a mais utilizada. A manipulação vertebral exerceu influência, na maioria dos artigos, sobre a modulação autonômica cardíaca.Palavras-chave: manipulação da coluna, sistema nervoso autônomo, variabilidade da frequência cardíaca. 


2015 ◽  
Vol 28 (3) ◽  
pp. 627-636 ◽  
Author(s):  
Gustavo Henrique de Oliveira Mondoni ◽  
Luiz Carlos Marques Vanderlei ◽  
Bruno Saraiva ◽  
Franciele Marques Vanderlei

AbstractIntroduction It is known that physical exercise is beneficial and precipitates adjustments to the autonomic nervous system. However, the effect of exercise on cardiac autonomic modulation in children, despite its importance, is poorly investigated.Objective To bring together current information about the effects of exercise on heart rate variability in healthy and obese children.Methods The literature update was performed through a search for articles in the following databases; PubMed, PEDro, SciELO and Lilacs, using the descriptors “exercise” and “child” in conjunction with the descriptors “autonomic nervous system”, “sympathetic nervous system”, “parasympathetic nervous system” and also with no descriptor, but the key word of this study, “heart rate variability”, from January 2005 to December 2012.Results After removal of items that did not fit the subject of the study, a total of 9 articles were selected, 5 with healthy and 4 with obese children.Conclusion The findings suggest that exercise can act in the normalization of existing alterations in the autonomic nervous system of obese children, as well as serve as a preventative factor in healthy children, enabling healthy development of the autonomic nervous system until the child reaches adulthood.


Sign in / Sign up

Export Citation Format

Share Document