scholarly journals Kendali Kecepatan Motor DC dengan Buck Converter menggunakan Full State Feedback-Pole Placement

Author(s):  
NUR SULISTYAWATI ◽  
FAHMIZAL FAHMIZAL ◽  
IOTA NATHASYA

ABSTRAKMakalah ini menyajikan penjelasan tentang penerepan full state feedback menggunakan metode pole placement pada sistem buck converter dengan Motor DC. Penambahan komponen buck converter diharapkan dapat membantu menaikkan nilai efisiensi sistem dan memperpanjang umur komponen switch yang digunakan. Namun terkadang sistem ini masih memerlukan kendali untuk dapat memaksimalkan perfoma sistem baik dari segi rising time, settling time maupun error steady state dari sistem. Simulasi kendali full state feedback menggunakan pole placement disimulasikan dengan pemodelan buck converter dan motor DC menggunakan Simscape dan Simulink pada Matlab. Dari hasil simulasi diperoleh bahwa kendali pole placement mampu menghasilkan kondisi rising time 1.4508s, settling time 2.5729s sedangkan kendali LQR lebih lambat 0.9524s untuk rising time dan 4.3603s untuk settling time saat diuji dengan sinyal step. Selain itu, penambahan pre compensator (Nbar) telah membuat sistem mampu mencapai nilai referensi yang diharapkan (error steady state menuju nol).Kata kunci: Motor DC, Buck Converter, Pole Placement. ABSTRACTThis paper presents an explanation of the advanced full state feedback using the pole placement method in a buck converter system with a DC motor. The addition of buck converter components is expected to help increase the value of system efficiency and extend the life of the switch components used. However, sometimes this system still requires control to be able to maximize system performance in terms of both the rising time, the settling time and the steady state error of the system. Full state feedback control simulation using pole placement is simulated by modeling the buck converter and DC motor using Simscape and Simulink in Matlab. The simulation results show that the pole placement control is capable of producing a rising time of 1.4508s, settling time of 2.5729s, while LQR control is 0.9524s slower for rising time and 4.3603s for settling time when tested with step signals. In addition, the addition of a pre compensator (Nbar) has made the system able to reach the expected reference value (steady state error goes to zero).Keywords: DC Motor, Buck Converter, Pole Placement.

2011 ◽  
Vol 130-134 ◽  
pp. 2876-2880
Author(s):  
Qiang He

Conventional single closed-loop system of DC motor with speed-feedback has poor performance when some stochastic disturbances take place. To handle this shortcoming, the control system with full-state feedback and integral output feedback of DC motor is proposed. The state-space model of the full-state feedback of DC motors is established. The feedback gains of the control system are optimized by Particle Swarm Optimization algorithms based the simulation model. The simulation results show that the control system with full-state feedback of DC motors has better dynamic performance.


2019 ◽  
Vol 11 (2) ◽  
pp. 44-49
Author(s):  
Esa Apriaskar ◽  
Fahmizal Fahmizal ◽  
Nur Azis Salim ◽  
Dhidik Prastiyanto

Due to potential features of unmanned aerial vehicles for society, the development of bicopter has started to increase. This paper contributes to the development by presenting a performance evaluation of balancing bicopter control in roll attitude. It aims to determine the best controller structure for the balancing bicopter. The controller types evaluated are based on Ziegler-Nichols tuning method; they are proportional (P), proportional-integral (PI), and proportional-integral-derivative (PID) controllers. Root locus plot of the closed-loop balancing bicopter system is used to decide the tuning approach. This work considers a difference in pulse-width-modulation (PWM) signal between the left and right rotors as the signal control and bicopter angle in roll movement as the output. Parameters tuned by the method are Kp, Ti, and Td which is based on the ideal PID structure. The performance test utilizes rising time, settling time, maximum overshoot, and steady-state error to determine the most preferred controller. The result shows that PI-controller has the best performance among the other candidates, especially in maximum overshoot and settling time. It reaches 8.34 seconds in settling time and 3.71% in maximum overshoot. Despite not being the best in rising time and resembling PID-controller performances in steady-state error criteria, PI-controller remains the most preferred structure considering the closeness of the response to the desired value.


JURNAL ELTEK ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 125
Author(s):  
Oktriza Melfazen

Buck converter idealnya mempunyai keluaran yang stabil, pemanfaatandaya rendah, mudah untuk diatur, antarmuka yang mudah dengan pirantiyang lain, ketahanan yang lebih tinggi terhadap perubahan kondisi alam.Beberapa teknik dikembangkan untuk memenuhi parameter buckconverter. Solusi paling logis untuk digunakan pada sistem ini adalahmetode kontrol digital.Penelitian ini menelaah uji performansi terhadap stabilitas tegangankeluaran buck converter yang dikontrol dengan Logika Fuzzy metodeMamdani. Rangkaian sistem terdiri dari sumber tegangan DC variable,sensor tegangan dan Buck Converter dengan beban resistif sebagaimasukan, mikrokontroler ATMega 8535 sebagai subsistem kontroldengan metode logika fuzzy dan LCD sebagai penampil keluaran.Dengan fungsi keanggotaan error, delta error dan keanggotaan keluaranmasing-masing sebanyak 5 bagian serta metode defuzzifikasi center ofgrafity (COG), didapat hasil rerata error 0,29% pada variable masukan18V–20V dan setpoint keluaran 15V, rise time (tr) = 0,14s ; settling time(ts) = 3,4s ; maximum over shoot (%OS) = 2,6 dan error steady state(ess) = 0,3.


2021 ◽  
Vol 1783 ◽  
pp. 012057
Author(s):  
Iswanto ◽  
Nia Maharani Raharja ◽  
Alfian Ma’arif ◽  
Yogi Ramadhan ◽  
Phisca Aditya Rosyady

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Emmanouil Spyrakos-Papastavridis ◽  
Jian S. Dai

Abstract This paper attempts to address the quandary of flexible-joint humanoid balancing performance augmentation, via the introduction of the Full-State Feedback Variable Impedance Control (FSFVIC), and Model-Free Compliant Floating-base VIC (MCFVIC) schemes. In comparison to rigid-joint humanoid robots, efficient balancing control of compliant bipeds, powered by Series Elastic Actuators (or harmonic drives), requires the design of more sophisticated controllers encapsulating both the motor and underactuated link dynamics. It has been demonstrated that Variable Impedance Control (VIC) can improve robotic interaction performance, albeit by introducing energy-injecting elements that may jeopardize closed-loop stability. To this end, the novel FSFVIC and MCFVIC schemes are proposed, which amalgamate both collocated and non-collocated feedback gains, with power-shaping signals that are capable of preserving the system's stability/passivity during VIC. The FSFVIC and MCFVIC stably modulate the system's collocated state gains to augment balancing performance, in addition to the non-collocated state gains that dictate the position control accuracy. Utilization of arbitrarily low-impedance gains is permitted by both the FSFVIC and MCFVIC schemes propounded herein. An array of experiments involving the COmpliant huMANoid reveals that significant balancing performance amelioration is achievable through online modulation of the full-state feedback gains (VIC), as compared to utilization of invariant impedance control.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Sign in / Sign up

Export Citation Format

Share Document