BIOPHYSICAL BASES OF GENOME ORGANIZATION, AND NEUROPLASTICITY

Author(s):  
A.N. Volobuev ◽  
◽  
E.S. Petrov ◽  
N.P. Romanchuk ◽  
V.F. Pyatin ◽  
...  
Keyword(s):  
1985 ◽  
Vol 53 (1) ◽  
pp. 13-18 ◽  
Author(s):  
P G Fuchs ◽  
R Rüger ◽  
H Pfister ◽  
B Fleckenstein
Keyword(s):  

Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Ryzhkova ◽  
Alena Taskina ◽  
Anna Khabarova ◽  
Veniamin Fishman ◽  
Nariman Battulin

AbstractGeneration of mature red blood cells, consisting mainly of hemoglobin, is a remarkable example of coordinated action of various signaling networks. Chromatin condensation is an essential step for terminal erythroid differentiation and subsequent nuclear expulsion in mammals. Here, we profiled 3D genome organization in the blood cells from ten species belonging to different vertebrate classes. Our analysis of contact maps revealed a striking absence of such 3D interaction patterns as loops or TADs in blood cells of all analyzed representatives. We also detect large-scale chromatin rearrangements in blood cells from mammals, birds, reptiles and amphibians: their contact maps display strong second diagonal pattern, representing an increased frequency of long-range contacts, unrelated to TADs or compartments. This pattern is completely atypical for interphase chromosome structure. We confirm that these principles of genome organization are conservative in vertebrate erythroid cells.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wen-Ge Dong ◽  
Yalun Dong ◽  
Xian-Guo Guo ◽  
Renfu Shao

Abstract Background The typical single-chromosome mitochondrial (mt) genome of animals has fragmented into multiple minichromosomes in the lineage Mitodivisia, which contains most of the parasitic lice of eutherian mammals. These parasitic lice differ from each other even among congeneric species in mt karyotype, i.e. the number of minichromosomes, and the gene content and gene order in each minichromosome, which is in stark contrast to the extremely conserved single-chromosome mt genomes across most animal lineages. How fragmented mt genomes evolved is still poorly understood. We use Polyplax sucking lice as a model to investigate how tRNA gene translocation shapes the dynamic mt karyotypes. Results We sequenced the full mt genome of the Asian grey shrew louse, Polyplax reclinata. We then inferred the ancestral mt karyotype for Polyplax lice and compared it with the mt karyotypes of the three Polyplax species sequenced to date. We found that tRNA genes were entirely responsible for mt karyotype variation among these three species of Polyplax lice. Furthermore, tRNA gene translocation observed in Polyplax lice was only between different types of minichromosomes and towards the boundaries with the control region. A similar pattern of tRNA gene translocation can also been seen in other sucking lice with fragmented mt genomes. Conclusions We conclude that inter-minichromosomal tRNA gene translocation orientated towards the boundaries with the control region is a major contributing factor to the highly dynamic mitochondrial genome organization in the parasitic lice of mammals.


2021 ◽  
Vol 46 ◽  
pp. 107659
Author(s):  
Jana Zwyrtková ◽  
Hana Šimková ◽  
Jaroslav Doležel

Sign in / Sign up

Export Citation Format

Share Document