scholarly journals CORROSION RATE MEASUREMENTS PROBABILISTIC STUDY OF CHLORIDE-INDUCED ACCELERATION STEEL IN CONCRETE STRUCTURES USING ELECTROCHEMICAL METHOD

Author(s):  
CHARLES KENNEDY ◽  
PHILIP KPAE F. O ◽  
MACMAMMAH MICHAEL
2018 ◽  
Vol 941 ◽  
pp. 1760-1765
Author(s):  
Satoshi Sunada ◽  
Yoshitaka Matsui ◽  
Syogo Takeuchi ◽  
Taku Iwaoka ◽  
Koichi Sato ◽  
...  

Sintered magnesium alloys, which were fabricated by Spark Plasma Sintering (SPS) method, were examined to study corrosion characteristics by electrochemical method, XRD and EPMA. The binary mixtures alloys of a low-melting-point metal powder (Sn, Bi, Sb) of1.0 vol.% and the pure magnesium powder were prepared. In the Mg-1.0vol.%Bi and Mg-1.0vol.%Sn, Mg3Bi2 and Mg2Sn precipitates was recognized by XRD, respectively. In addition, formation of oxide along powder particle boundaries was observed by EPMA elemental mapping in all specimens. In the case of Mg-1.0vol.%Zn, precipitation of metallic compounds was not recognized by these experiments. According to the results of polarization curve measurements, the Mg-1.0vol.%Bi shows highest corrosion potential. However, corrosion rate which was estimated by Tafel method is relatively larger than other alloys due to Mg3Bi2 precipitation. This result suggests that Mg3Bi2 acts as cathode site. The Mg-1.0vol.%Sn shows superior corrosion rale in these alloys.


2013 ◽  
Vol 683 ◽  
pp. 396-399
Author(s):  
Zhi Guo Wang ◽  
Zhen Li ◽  
Xiao Yan Liu ◽  
Yi Hua Dou

P110 Steel Flow-induced corrosion Electrochemical Method Abstract. Electrochemical measurements have been used to investigate the flow-induced corrosion behaviors of P110 oil tube in 3.5wt% NaCl solution. The corrosion rates were calculated by linear polarization resistance method and weak polarization method respectively. The results demonstrated that corrosion rate of P110 steel increases sharply with the flow velocity increase when the impact angle is 30°, but it reach the first plateau when the fluid velocity changes from 5.6 m/s to 7.8 m/s and the corrosion rate increases sharply again when the velocity beyond 7.8 m/s. After that, corrosion rate decrease when the velocity is more than 10.0m/s. It is demonstrated that the corrosion rate of steel P110 is controlled by cathode reaction of oxygen diffusion in the 3.5 wt % NaCl solution when the flow velocity is over 10.0m/s.


2020 ◽  
Vol 112 ◽  
pp. 103672 ◽  
Author(s):  
Gabriel Samson ◽  
Fabrice Deby ◽  
Jean-Luc Garciaz ◽  
Mansour Lassoued

Author(s):  
Ayodele Samuel Adeniyi ◽  
Mary Ajimegoh Awotunde

The Tafel extrapolation and linear polarization methods were used as effective measures for determining the corrosion susceptibility of a spheroidized 0.35%C steel with sea water as the electrolyte. Eight pieces of steel were machined to length 5mm by 10mm in diameter. Two pieces each were heat treated at 600°C, 700°C and 800°C respectively and two pieces left as control. Electro-chemical experiments were carried out to obtain the best potential and anodic current of samples immersed in an electrolyte (seawater) at varying anodic potential of-0.7mv, -0.6mv, -0.5mv and-0.4mv respectively. The results showed that the sample with the least corrosion rate were the samples spheroidized at 700°C. They appeared to have the highest electrode potential value of-0.6mv and 800°C spheroidized samples had the least electrode potential value of-0.65mv at the end of 2000seconds respectively. From the results obtained, the samples spheroidized at 700°C appeared to be most suitable for seawater environment.


Sign in / Sign up

Export Citation Format

Share Document