Estimation of Concrete Cover Failure Time Considering the Corrosion Rate in Reinforced Concrete Structures

2006 ◽  
Vol 18 (2) ◽  
pp. 233-238
Author(s):  
Bong-Seok Jang
2013 ◽  
Vol 61 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Guofu Qiao ◽  
Yi Hong ◽  
Tiejun Liu ◽  
Jinping Ou

Purpose – The aim of this paper was to investigate the passive corrosion control and active corrosion protective effect of the reinforced concrete structures by electrochemical chloride removal (ECR) method and inhibitors approach, respectively. Design/methodology/approach – The concentration of aggressive chloride ion distributed from the reinforcing steel to the surface of the concrete cover was analyzed during the ECR processes. Besides, the half-cell potential, the concrete resistance R c , the polarization resistance R p and the capacitance of double layer C dl of the steel/concrete system were used to characterize the electrochemical performance of the concrete prisms. Findings – The effectiveness of ECR could be enhanced by increasing the amplitude of potential or prolonging the time. Inhibitor SBT-ZX(I) could successfully prevent the corrosion development of the reinforcing steel in concrete. Originality/value – The research provides the scientific basis for the practical application of ECR and inhibitors in the field.


2020 ◽  
Vol 112 ◽  
pp. 103672 ◽  
Author(s):  
Gabriel Samson ◽  
Fabrice Deby ◽  
Jean-Luc Garciaz ◽  
Mansour Lassoued

2016 ◽  
Vol 20 (9) ◽  
pp. 1390-1405 ◽  
Author(s):  
Ahmed A Abouhussien ◽  
Assem AA Hassan

This article presents the results of an experimental investigation on the application of acoustic emission technique for monitoring the steel-to-concrete bond integrity of reinforced concrete structures. A series of direct pull-out tests were performed on 54 reinforced concrete unconfined prism samples with variable rebar diameter (10, 20, and 35 mm), embedded length (50, 100, and 200 mm), and concrete cover (20, 30, and 40 mm). The samples were tested under incrementally increasing monotonic loading while being continuously monitored via attached acoustic emission sensors. These sensors were utilized to acquire different acoustic emission signal parameters emitted throughout the tests until failure. Also, an acoustic emission intensity analysis was implemented on acoustic emission signal strength data to quantify the damage resulting from loss of bond in all tested specimens. This analysis employed the signal strength of all recorded acoustic emission hits to develop two additional parameters: historic index ( H ( t)) and severity ( Sr). The results of bond behavior, mode of failure, and free end slip were compared with the recorded acoustic emission data. The results showed that the cumulative number of hits, cumulative signal strength, H ( t), and Sr had a good correlation with different stages of bond damage from de-bonding/micro-cracking until bond splitting failure and bar slippage, which caused cover cracking or delamination. The analysis of cumulative signal strength and H ( t) curves enabled early identification of two progressive stages of bond degradation (micro-cracking and macro-cracking) and recognized the various modes of failure of the tested specimens. The variations of bar diameter, concrete cover, and embedded length yielded significant impacts on both the bond behavior and acoustic emission activities. The results also presented developed intensity classification charts, based on H ( t) and Sr, to assess the bond integrity and to quantify the bond deterioration (micro-cracking, macro-cracking, and rebar slip) in reinforced concrete structures.


2006 ◽  
Vol 302-303 ◽  
pp. 610-617
Author(s):  
Jia Jin Zheng ◽  
Xin Zhu Zhou ◽  
Shi Lang Xu

Crack width is a significant parameter for assessing service life of reinforced concrete structures in chloride-laden environments. Corrosion-induced concrete cracking is a predominant causal factor influencing premature degradation of reinforced concrete structures, incurring considerable costs for repairs and inconvenience to the public due to interruptions. This gives rise to the need for accurate prediction of crack width in order to achieve cost-effectiveness in maintaining serviceability of concrete structures. It is in this regard that the present paper attempts to develop a quasi-brittle mechanical model to predict crack width of chloride contaminated concrete structures. Assuming that cracks be smeared uniformly in all directions and concrete be a quasi-brittle material, the displacement and stress in a concrete cover, before and after surface cracking, were derived respectively in an analytical manner. Crack width, as a function of the cover depth, steel bar diameter, corrosion rate and time, was then determined. Finally, the analysis results were verified by comparing the solution with the experimental results. The effects of the cover depth, steel bar diameter and corrosion rate on the service life were discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document