scholarly journals Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown

1998 ◽  
Vol 57 (8) ◽  
pp. 4535-4565 ◽  
Author(s):  
Éanna É. Flanagan ◽  
Scott A. Hughes

2020 ◽  
Vol 35 (31) ◽  
pp. 2050205
Author(s):  
Aung Naing Win ◽  
Yu-Ming Chu ◽  
Hasrat Hussain Shah ◽  
Syed Zaheer Abbas ◽  
Munawar Shah

A Satellite Fermi GBM detected recent putative short Gamma Ray Bursts (GRBs) in coincident with the gravitational wave signal GW 150914 produced by the merger of binary black hole (BH). If at least one BH possess magnetic monopole charge in the binary BH system then the short-duration GRBs may produce during the final phase of a binary BH merger. The detection of gravitational waves GW 150914, GW 151226 and LVT 151012 by LIGO gave the evidence that merging of the compact object like binary BH often happens in our universe. In this paper, we report the qualitative model to discuss the generation of electromagnetic radiation from the merging of two BHs with equal masses and at least one BH carrying the magnetic monopole charge in the binary system. In this model, BH possess a magnetic monopole charge that may not be neutralized before the coalescence. During the inspiralling process, the magnetic monopole charge on the BH would produced the electric dipole moment. Short duration GRB would produce by the rapidly evolution of the electric dipole moment which may detectable on Earth. We predict that this model would be beneficial in the future to explain the generation of gravitational wave (GW) plus a electromagnetic signal of multi-wavelength from mergers of magnetically charged BHs.



2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Juan Calderon Bustillo ◽  
Christopher Evans ◽  
James A. Clark ◽  
Grace Kim ◽  
Pablo Laguna ◽  
...  

Abstract The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics of the black hole horizon. Using numerical relativity simulations, we demonstrate a connection between a concrete observable feature in the gravitational waves and geometrical features on the dynamical apparent horizon of the final black hole. Specifically, we show how the line-of-sight passage of a “cusp”-like defect on the horizon of the final black hole correlates with “chirp”-like frequency peaks in the post-merger gravitational-waves. These post-merger chirps should be observed and analyzed as the sensitivity of LIGO and Virgo increase and as future generation detectors, such as LISA and the Einstein Telescope, become operational.



2012 ◽  
Vol 86 (6) ◽  
Author(s):  
J. Abadie ◽  
B. P. Abbott ◽  
R. Abbott ◽  
M. Abernathy ◽  
T. Accadia ◽  
...  




2021 ◽  
Vol 923 (2) ◽  
pp. 139
Author(s):  
Fupeng Zhang ◽  
Xian Chen ◽  
Lijing Shao ◽  
Kohei Inayoshi

Abstract We study the stellar binary black holes (BBHs) inspiraling/merging in galactic nuclei based on our numerical method GNC. We find that 3%–40% of all newborn BBHs will finally merge due to various dynamical effects. In a five-year mission, up to 104, 105, and ∼100 of BBHs inspiraling/merging in galactic nuclei can be detected with signal-to-noise ration >8 in Advanced LIGO (aLIGO), Einstein/DECIGO, and TianQin/LISA/TaiJi, respectively. Roughly tens are detectable in both LISA/TaiJi/TianQin and aLIGO. These BBHs have two unique characteristics. (1) Significant eccentricities: 1%–3%, 2%–7%, or 30%–90% of them have e i > 0.1 when they enter into aLIGO, Einstein, or space observatories, respectively. Such high eccentricities provide a possible explanation for that of GW190521. Most highly eccentric BBHs are not detectable in LISA/Tianqin/TaiJi before entering into aLIGO/Einstein, as their strain becomes significant only at f GW ≳ 0.1 Hz. DECIGO becomes an ideal observatory to detect those events, as it can fully cover the rising phase. (2) Up to 2% of BBHs can inspiral/merge at distances ≲103 r SW from the massive black hole, with significant accelerations, such that the Doppler phase drift of ∼10–105 of them can be detected with signal-to-noise ratio >8 in space observatories. The energy density of the gravitational-wave backgrounds (GWBs) contributed by these BBHs deviates from the power-law slope of 2/3 at f GW ≲ 1 mHz. The high eccentricity, significant accelerations, and the different profile of the GWB of these sources make them distinguishable, and thus interesting for future gravitational-wave detections and tests of relativities.



2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Sizheng Ma ◽  
Matthew Giesler ◽  
Vijay Varma ◽  
Mark A. Scheel ◽  
Yanbei Chen




2010 ◽  
Vol 81 (10) ◽  
Author(s):  
Pranesh A. Sundararajan ◽  
Gaurav Khanna ◽  
Scott A. Hughes


Sign in / Sign up

Export Citation Format

Share Document