scholarly journals On the violation of local thermodynamic equilibrium in the plasma jet of an argon arc two-jet plasmatron

2019 ◽  
Vol 85 (1II)) ◽  
pp. 145-150
Author(s):  
A. S. Cherevko ◽  
A. A. Morozova

The degree and nature of the violation of local thermodynamic equilibrium (LTE) in the analytical zone of a plasma jet generated by an argon arc two-jet plasmatron (TJP) was estimated using an unconventional method based on determination of the nonequilibrium parameterbiequal to the ratio of the experimentally determined actual population of the energy level (ni) of the element to the population of the same level calculated from the Saha equation (nis). Partial ionizing deviation of plasma under study from the equilibrium state takes place only when low-lying atomic levels are overpopulated. The distinct dependence ofbion the ionization potential of the considered element (e.g., Ca, Mg, and Be) is shown. The results were interpreted in the light of the increasing role of radiation processes upon excitation of spectra in the argon arc two-jet plasmatron.

1999 ◽  
Vol 17 (4) ◽  
pp. 635-647 ◽  
Author(s):  
J.G. RUBIANO ◽  
R. RODRÍGUEZ ◽  
J.M. GIL ◽  
P. MARTEL ◽  
E. MÍNGUEZ

In this work, the Saha equation is solved using atomic data provided by means of analytical potentials to calculate the ionization state and ion abundances for local thermodynamic equilibrium (LTE) plasmas of Al, Fe, and Au. The plasma effects are taking into account using an analytical potential which includes plasma effects. The problem of the cut off partition functions in the Saha equation is also analyzed using three different criteria. Finally, some opacity calculations are performed.


2019 ◽  
Vol 20 (4) ◽  
pp. 345-353
Author(s):  
Ya.S. Budzhak ◽  
T. Wacławski

This paper presents an elementary model of a crystal and its thermodynamic equilibrium state. It was shown that the thermodynamic characteristics of the crystal at this state are described by the Gibbs grand thermodynamic potential. If the crystal is removed away from the equilibrium state, then in this state it will be described by the set of kinetic properties, and these properties are statistically calculated with the use of the non-equilibrium Gibbs grand thermodynamic potential. Crystals’ thermodynamic and kinetic properties have analytical dependence on the current carriers dispersion law and chemical potential of these carriers. In this work, it was shown that the determination of the dispersion law and chemical potential – these are complicated problems of statistical and kinetic theories of crystals’ properties.


2008 ◽  
Vol 26 (1) ◽  
pp. 21-32 ◽  
Author(s):  
J.M. Gil ◽  
R. RodrÍguez ◽  
R. Florido ◽  
J.G. Rubiano ◽  
P. Martel ◽  
...  

AbstractIn this work is accomplished the determination of the corona, local and non-local thermodynamic equilibrium regimes for optically thin carbon plasmas in steady state, in terms of the plasma density and temperature using the ABAKO code. The determination is made through the analysis of the plasma average ionization and ion and level populations. The results are compared whit those obtained applying Griem's criterion. Finally, it is made a brief analysis of the effects of the calculation of level populations assuming different plasma regimes in radiative properties, such as emissivities and opacities.


2017 ◽  
Vol 13 (S334) ◽  
pp. 364-365
Author(s):  
M. Steffen ◽  
A. J. Gallagher ◽  
E. Caffau ◽  
P. Bonifacio ◽  
H.-G. Ludwig

AbstractWe present our latest 3D model atmospheres for carbon-enhanced metal-poor (CEMP) stars computed with the CO5BOLD code. The stellar parameters are representative of hot turn-off objects (Teff ~ 6250 K, log g = 4.0, [Fe/H]=−3). The main purpose of these models is to investigate the role of 3D effects on synthetic spectra of the CH G-band (4140-4400 Å), the CN BX-band (3870-3890 Å), and several UV OH transitions (3122-3128 Å). By comparison with the synthetic spectra from standard 1D model atmospheres (assuming local thermodynamic equilibrium, LTE), we derive 3D abundance corrections for carbon and oxygen of up to −0.5 and −0.7 dex, respectively.


Sign in / Sign up

Export Citation Format

Share Document