scholarly journals Land use changes involving forestry in the United States: 1952 to 1997, with projections to 2050.

Author(s):  
Ralph J. Alig ◽  
Andrew J. Plantinga ◽  
SoEun Ahn ◽  
Jeffrey D. Kline
2011 ◽  
Vol 02 (01) ◽  
pp. 27-51 ◽  
Author(s):  
DAVID HAIM ◽  
RALPH J. ALIG ◽  
ANDREW J. PLANTINGA ◽  
BRENT SOHNGEN

An econometric land-use model is used to project regional and national land-use changes in the United States under two IPCC emissions scenarios. The key driver of land-use change in the model is county-level measures of net returns to five major land uses. The net returns are modified for the IPCC scenarios according to assumed trends in population and income and projections from integrated assessment models of agricultural prices and agricultural and forestry yields. For both scenarios, we project large increases in urban land by the middle of the century, while the largest declines are in cropland area. Significant differences among regions in the projected patterns of land-use change are evident, including an expansion of forests in the Mountain and Plains regions with declines elsewhere. Comparisons to projections with no climate change effects on prices and yields reveal relatively small differences. Thus, our findings suggest that future land-use patterns in the U.S. will be shaped largely by urbanization, with climate change having a relatively small influence.


2014 ◽  
Vol 14 (19) ◽  
pp. 26495-26543 ◽  
Author(s):  
M. Val Martin ◽  
C. L. Heald ◽  
J.-F. Lamarque ◽  
S. Tilmes ◽  
L. K. Emmons ◽  
...  

Abstract. We use a global coupled chemistry-climate-land model (CESM) to assess the integrated effect of climate, emissions and land use changes on annual surface O3 and PM2.5 on the United States with a focus on National Parks (NPs) and wilderness areas, using the RCP4.5 and RCP8.5 projections. We show that, when stringent domestic emission controls are applied, air quality is predicted to improve across the US, except surface O3 over the western and central US under RCP8.5 conditions, where rising background ozone counteracts domestic emissions reductions. Under the RCP4.5, surface O3 is substantially reduced (about 5 ppb), with daily maximum 8 h averages below the primary US EPA NAAQS of 75 ppb (and even 65 ppb) in all the NPs. PM2.5 is significantly reduced in both scenarios (4 μg m−3; ~50%), with levels below the annual US EPA NAAQS of 12 μg m−3 across all the NPs; visibility is also improved (10–15 deciviews; >75 km in visibility range), although some parks over the western US (40–74% of total sites in the US) may not reach the 2050 target to restore visibility to natural conditions by 2064. We estimate that climate-driven increases in fire activity may dominate summertime PM2.5 over the western US, potentially offsetting the large PM2.5 reductions from domestic emission controls, and keeping visibility at present-day levels in many parks. Our study suggests that air quality in 2050 will be primarily controlled by anthropogenic emission patterns. However, climate and land use changes alone may lead to a substantial increase in surface O3 (2–3 ppb) with important consequences for O3 air quality and ecosystem degradation at the US NPs. Our study illustrates the need to consider the effects of changes in climate, vegetation, and fires in future air quality management and planning and emission policy making.


2015 ◽  
Vol 15 (5) ◽  
pp. 2805-2823 ◽  
Author(s):  
M. Val Martin ◽  
C. L. Heald ◽  
J.-F. Lamarque ◽  
S. Tilmes ◽  
L. K. Emmons ◽  
...  

Abstract. We use a global coupled chemistry–climate–land model (CESM) to assess the integrated effect of climate, emissions and land use changes on annual surface O3 and PM2.5 in the United States with a focus on national parks (NPs) and wilderness areas, using the RCP4.5 and RCP8.5 projections. We show that, when stringent domestic emission controls are applied, air quality is predicted to improve across the US, except surface O3 over the western and central US under RCP8.5 conditions, where rising background ozone counteracts domestic emission reductions. Under the RCP4.5 scenario, surface O3 is substantially reduced (about 5 ppb), with daily maximum 8 h averages below the primary US Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) of 75 ppb (and even 65 ppb) in all the NPs. PM2.5 is significantly reduced in both scenarios (4 μg m−3; ~50%), with levels below the annual US EPA NAAQS of 12 μg m−3 across all the NPs; visibility is also improved (10–15 dv; >75 km in visibility range), although some western US parks with Class I status (40–74 % of total sites in the US) are still above the 2050 planned target level to reach the goal of natural visibility conditions by 2064. We estimate that climate-driven increases in fire activity may dominate summertime PM2.5 over the western US, potentially offsetting the large PM2.5 reductions from domestic emission controls, and keeping visibility at present-day levels in many parks. Our study indicates that anthropogenic emission patterns will be important for air quality in 2050. However, climate and land use changes alone may lead to a substantial increase in surface O3 (2–3 ppb) with important consequences for O3 air quality and ecosystem degradation at the US NPs. Our study illustrates the need to consider the effects of changes in climate, vegetation, and fires in future air quality management and planning and emission policy making.


2014 ◽  
Vol 96 ◽  
pp. 423-429 ◽  
Author(s):  
Anthony Carpi ◽  
Anne H. Fostier ◽  
Olivia R. Orta ◽  
Jose Carlos dos Santos ◽  
Michael Gittings

Ecosystems ◽  
2015 ◽  
Vol 18 (8) ◽  
pp. 1332-1342 ◽  
Author(s):  
Sebastián Martinuzzi ◽  
Gregorio I. Gavier-Pizarro ◽  
Ariel E. Lugo ◽  
Volker C. Radeloff

1964 ◽  
Vol 46 (3) ◽  
pp. 698
Author(s):  
A. Allan Schmid ◽  
Howard W. Ottoson

2003 ◽  
Vol 13 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Zhiqiang Gao ◽  
Jiyuan Liu ◽  
Xiangzheng Deng

Sign in / Sign up

Export Citation Format

Share Document