Thyrotropin releasing hormone and analogues rapidly lose their TRH receptor binding capacities in solution. A discrepancy from degradation.

1983 ◽  
Vol 30 (3) ◽  
pp. 117-119
Author(s):  
KUNIHIKO FUNATSU ◽  
SHIGEKI TESHIMA ◽  
KAZUTOYO INANAGA
1981 ◽  
Vol 205 (1) ◽  
pp. 169-174 ◽  
Author(s):  
Norio Ogawa ◽  
Yasuhide Yamawaki ◽  
Hiroo Kuroda ◽  
Tadashi Ofuji ◽  
Eiko Itoga ◽  
...  

1995 ◽  
Vol 147 (3) ◽  
pp. 397-404 ◽  
Author(s):  
L M Atley ◽  
N Lefroy ◽  
J D Wark

Abstract 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) is active in primary dispersed and clonal pituitary cells where it stimulates pituitary hormone production and agonist-induced hormone release. We have studied the effect of 1,25-(OH)2D3 on thyrotropin-releasing hormone (TRH) binding in clonal rat pituitary tumour (GH3) cells. Compared with vehicle-treated cells, 1,25-(OH)2D3 (10 nmol/l) increased specific [3H]MeTRH binding by 26% at 8 h, 38% at 16 h, 35% at 24 h and reached a maximum at 48 h (90%). In dose–response experiments, specific [3H]MeTRH binding increased with 1,25-(OH)2D3 concentration and reached a maximum at 10 nmol/l. Half-maximal binding occurred at 0·5 nmol 1,25-(OH)2D3/l. The vitamin D metabolite, 25-OH D3, increased [3H]MeTRH binding but was 1000-fold less potent than 1,25-(OH)2D3. In equilibrium binding assays, treatment with 10 nmol 1,25-(OH)2D3/l for 48 h increased the maximum binding from 67·4 ± 8·8 fmol/mg protein in vehicle-treated cells to 96·7 ± 12·4 fmol/mg protein in treated cells. There was no difference in apparent Kd (1·08 ± 0·10 nmol/l for 1,25-(OH)2D3-treated and 0·97 ± 0·11 nmol/l for vehicle-treated cells). Molecular investigations revealed that 10 nmol 1,25-(OH)2D3/l for 24 h caused an 8-fold increase in TRH receptor-specific mRNA. Actinomycin D (2 μg/ml, 6 h) abrogated the 1,25-(OH)2D3-induced increase in [3H]MeTRH binding. Cortisol also increased [3H]MeTRH binding but showed no additivity or synergism with 1,25-(OH)2D3. TRH-stimulated prolactin release was not enhanced by 1,25-(OH)2D3. We conclude that the active vitamin D metabolite, 1,25-(OH)2D3, caused a time- and dose-dependent increase in [3H]MeTRH binding. The effect was vitamin D metabolite-specific and resulted from an upregulation of the TRH receptor. Further studies are needed to determine the functional significance of this novel finding. Journal of Endocrinology (1995) 147, 397–404


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5397
Author(s):  
Daniel L. De La Cruz ◽  
Laszlo Prokai ◽  
Katalin Prokai-Tatrai

After we identified pGlu-βGlu-Pro-NH2 as the first functional antagonist of the cholinergic central actions of the thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2), we became interested in finding the receptor-associated mechanism responsible for this antagonism. By utilizing a human TRH receptor (hTRH-R) homology model, we first refined the active binding site within the transmembrane bundle of this receptor to enhance TRH’s binding affinity. However, this binding site did not accommodate the TRH antagonist. This prompted us to consider a potential allosteric binding site in the extracellular domain (ECD). Searches for ECD binding pockets prompted a remodeling of the extracellular loops and the N-terminus. We found that different trajectories of ECDs produced novel binding cavities that were then systematically probed with TRH, as well as its antagonist. This led us to establish not only a surface-recognition binding site for TRH, but also an allosteric site that exhibited a selective and high-affinity binding for pGlu-βGlu-Pro-NH2. The allosteric binding of this TRH antagonist is more robust than TRH’s binding to its own active site. The findings reported here may shed light on the mechanisms and the multimodal roles by which the ECD of a TRH receptor is involved in agonist and/or antagonist actions.


Sign in / Sign up

Export Citation Format

Share Document