Role of "handle" region of prorenin prosegment in the non-proteolytic activation of prorenin by binding to membrane anchored (pro)renin receptor

10.2741/2429 ◽  
2007 ◽  
Vol 12 (12) ◽  
pp. 4810 ◽  
Author(s):  
Nabi AHM Nurun
2019 ◽  
Vol 20 (12) ◽  
pp. 3077 ◽  
Author(s):  
Elizabeta Madzharova ◽  
Philipp Kastl ◽  
Fabio Sabino ◽  
Ulrich auf dem Keller

Due to their capacity to process different proteins of the extracellular matrix (ECM), matrix metalloproteinases (MMPs) were initially described as a family of secreted proteases, functioning as main ECM regulators. However, through proteolytic processing of various biomolecules, MMPs also modulate intra- and extracellular pathways and networks. Thereby, they are functionally implicated in the regulation of multiple physiological and pathological processes. Consequently, MMP activity is tightly regulated through a combination of epigenetic, transcriptional, and post-transcriptional control of gene expression, proteolytic activation, post-translational modifications (PTMs), and extracellular inhibition. In addition, MMPs, their substrates and ECM binding partners are frequently modified by PTMs, which suggests an important role of PTMs in modulating the pleiotropic activities of these proteases. This review summarizes the recent progress towards understanding the role of PTMs (glycosylation, phosphorylation, glycosaminoglycans) on the activity of several members of the MMP family.


2012 ◽  
Vol 448 (3) ◽  
pp. 353-363 ◽  
Author(s):  
Mi Jung Kim ◽  
Mi-Jeong Park ◽  
Pil Joon Seo ◽  
Jin-Su Song ◽  
Hie-Joon Kim ◽  
...  

Controlled proteolytic activation of membrane-anchored transcription factors provides an adaptation strategy that guarantees rapid transcriptional responses to abrupt environmental stresses in both animals and plants. NTL6 is a plant-specific NAC [NAM/ATAF1/2/CUC2] transcription factor that is expressed as a dormant plasma membrane-associated form in Arabidopsis. Proteolytic processing of NTL6 is triggered by abiotic stresses and ABA (abscisic acid). In the present study, we show that NTL6 is linked directly with SnRK (Snf1-related protein kinase) 2.8-mediated signalling in inducing a drought-resistance response. SnRK2.8 phosphorylates NTL6 primarily at Thr142. NTL6 phosphorylation by SnRK2.8 is required for its nuclear import. Accordingly, a mutant NTL6 protein, in which Thr142 was mutated to an alanine, was poorly phosphorylated and failed to enter the nucleus. In accordance with the role of SnRK2.8 in drought-stress signalling, transgenic plants overproducing either NTL6 or its active form 6ΔC (35S:NTL6 and 35S:6ΔC) exhibited enhanced resistance to water-deficit conditions such as those overproducing SnRK2.8 (35S:SnRK2.8). In contrast, NTL6 RNAi (RNA interference) plants were susceptible to dehydration as observed in the SnRK2.8-deficient snrk2.8-1 mutant. Furthermore, the dehydration-resistant phenotype of 35S:NTL6 transgenic plants was compromised in 35S:NTL6 X snrk2.8-1 plants. These observations indicate that SnRK2.8-mediated protein phosphorylation, in addition to a proteolytic processing event, is important for NTL6 function in inducing a drought-resistance response.


1982 ◽  
Vol 48 (01) ◽  
pp. 054-058 ◽  
Author(s):  
A M H P van den Besselaar ◽  
I E Ram ◽  
G H J Alderkamp ◽  
R M Bertina

SummaryTissue thromboplastin apoprotein was partially purified from human brain. The apoprotein was recombined with mixed phospholipids to yield active thromboplastin. The recombined thromboplastin induced proteolytic activation of isolated human factor IX in the presence of factor VII and Ca2+. The clotting times of various deficient plasmas were determined as a function of apoprotein concentration, keeping the phospholipid concentration constant. The clotting times of a factor XII-deficient plasma were the same as those of a factor XII/factor IX-deficient plasma, except at very low apoprotein concentrations. However, under those conditions the difference in clotting times was independent of the presence of anti-factor VII serum. Similar observations were made for factor XI-deficient plasma in comparison with factor XI/factor IX-deficient plasma. These results indicate that activation of factor IX by factor VII/tissue thromboplastin does not significantly contribute to plasma coagulation.


Prion ◽  
2014 ◽  
Vol 8 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Dilshan S Harischandra ◽  
Naveen Kondru ◽  
Dustin P Martin ◽  
Arthi Kanthasamy ◽  
Huajun Jin ◽  
...  

1982 ◽  
Vol 206 (3) ◽  
pp. 675-678 ◽  
Author(s):  
Keisuke Hirasawa ◽  
Robin F. Irvine ◽  
Rex M. C. Dawson

The phosphatidylinositol phosphodiesterase of rat brain shows little activity under conditions likely to pertain in vivo (neutral pH and micromolar Ca2+concentrations). A short incubation of a brain supernatant with trypsin, or a longer pre-incubation of the supernatant alone, produce new forms of the enzyme, which are active under such conditions. A possible role of receptor-linked proteinases in initiating phosphatidylinositol catabolism is discussed.


1980 ◽  
Vol 2 (3-4) ◽  
pp. 575-592 ◽  
Author(s):  
H.M. F. Derkx ◽  
N. B. Bouma ◽  
L. H. Tan-Tjiong ◽  
J. A. Man in 't Veld ◽  
H.B. J. de Bruyn ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wanqiu Li ◽  
Linlin Wang ◽  
Bradley M. Wierbowski ◽  
Mo Lu ◽  
Feitong Dong ◽  
...  

AbstractThe membrane protein Dispatched (Disp), which belongs to the RND family of small molecule transporters, is essential for Hedgehog (Hh) signaling, by catalyzing the extracellular release of palmitate- and cholesterol-modified Hh ligands from producing cells. Disp function requires Furin-mediated proteolytic cleavage of its extracellular domain, but how this activates Disp remains obscure. Here, we employ cryo-electron microscopy to determine atomic structures of human Disp1 (hDisp1), before and after cleavage, and in complex with lipid-modified Sonic hedgehog (Shh) ligand. These structures, together with biochemical data, reveal that proteolytic cleavage opens the extracellular domain of hDisp1, removing steric hindrance to Shh binding. Structure-guided functional experiments demonstrate the role of hDisp1–Shh interactions in ligand release. Our results clarify the mechanisms of hDisp1 activation and Shh morphogen release, and highlight how a unique proteolytic cleavage event enabled acquisition of a protein substrate by a member of a family of small molecule transporters.


2008 ◽  
Vol 82 (19) ◽  
pp. 9458-9464 ◽  
Author(s):  
Grace Campagnola ◽  
Mark Weygandt ◽  
Kirsten Scoggin ◽  
Olve Peersen

ABSTRACT The crystal structure of the coxsackievirus B3 polymerase has been solved at 2.25-Å resolution and is shown to be highly homologous to polymerases from poliovirus, rhinovirus, and foot-and-mouth disease viruses. Together, these structures highlight several conserved structural elements in picornaviral polymerases, including a proteolytic activation-dependent N-terminal structure that is essential for full activity. Interestingly, a comparison of all of the picornaviral polymerase structures shows an unusual conformation for residue 5, which is always located at a distortion in the β-strand composed of residues 1 to 8. In our earlier structure of the poliovirus polymerase, we attributed this conformation to a crystal packing artifact, but the observation that this conformation is conserved among picornaviruses led us to examine the role of this residue in further detail. Here we use coxsackievirus polymerase to show that elongation activity correlates with the hydrophobicity of residue 5 and, surprisingly, more hydrophobic residues result in higher activity. Based on structural analysis, we propose that this residue becomes buried during the nucleotide repositioning step that occurs prior to phosphoryl transfer. We present a model in which the buried N terminus observed in all picornaviral polymerases is essential for stabilizing the structure during this conformational change.


Sign in / Sign up

Export Citation Format

Share Document