Opening effect on punching shear strength of RC slabs

Author(s):  
Georgios Balomenos ◽  
Aikaterini Genikomsou ◽  
Marianna Polak
2020 ◽  
pp. 136943322097814
Author(s):  
Xing-lang Fan ◽  
Sheng-jie Gu ◽  
Xi Wu ◽  
Jia-fei Jiang

Owing to their high strength-to-weight ratio, superior corrosion resistance, and convenience in manufacture, fiber-reinforced polymer (FRP) bars can be used as a good alternative to steel bars to solve the durability issue in reinforced concrete (RC) structures, especially for seawater sea-sand concrete. In this paper, a theoretical model for predicting the punching shear strength of FRP-RC slabs is developed. In this model, the punching shear strength is determined by the intersection of capacity and demanding curve of FRP-RC slabs. The capacity curve is employed based on critical shear crack theory, while the demand curve is derived with the help of a simplified tri-linear moment-curvature relationship. After the validity of the proposed model is verified with experimental data collected from the literature, the effects of concrete strength, loading area, FRP reinforcement ratio, and effective depth of concrete slabs are evaluated quantitatively.


2015 ◽  
Vol 12 (9) ◽  
pp. 1616-1640 ◽  
Author(s):  
Husain Abbas ◽  
Aref A. Abadel ◽  
Tarek Almusallam ◽  
Yousef Al-Salloum

2005 ◽  
pp. 255-260 ◽  
Author(s):  
Sumio HAMADA ◽  
Mingjie MAO ◽  
Hiroaki TANAKA ◽  
Qiuning YANG

2011 ◽  
Vol 90-93 ◽  
pp. 933-939 ◽  
Author(s):  
Qiu Ning Yang ◽  
Ming Jie Mao ◽  
Sumio Hamada

Several equations for punching shear strength of the reinforced concrete slab have been proposed in the world. These equations have their own factors affecting the strength. There are numerous test data for punching shear strength of RC slabs, which have been obtained by numerous researchers. A database with approximately 300 specimens has been structured through the present study. In the present study seven equations for punching shear strength are evaluated based on the database. CCES equation is also evaluated from the present database.


2021 ◽  
Vol 11 (6) ◽  
pp. 2736
Author(s):  
Min Sook Kim ◽  
Young Hak Lee

In this study, the structural behavior of reinforced concrete flat plates shear reinforced with vertical grids made of a glass fiber reinforced polymer (GFRP) was experimentally evaluated. To examine the shear strength, experiments were performed on nine concrete slabs with different amounts and spacings of shear reinforcement. The test results indicated that the shear strength increased as the amount of shear reinforcement increased and as the spacing of the shear reinforcement decreased. The GFRP shear reinforcement changed the cracks and failure mode of the specimens from a brittle punching to flexure one. In addition, the experimental results are compared with a shear strength equation provided by different concrete design codes. This comparison demonstrates that all of the equations underestimate the shear strength of reinforced concrete flat plates shear reinforced with GFRP vertical grids. The shear strength of the equation by BS 8110 is able to calculate the punching shear strength reasonably for a concrete flat plate shear reinforced with GFRP vertical grids.


Sign in / Sign up

Export Citation Format

Share Document