Size effect on punching shear strength of RC slabs with and without shear reinforcement

Author(s):  
Zdeněk P. Bažant ◽  
Abdullah Dönmez
2020 ◽  
pp. 136943322097814
Author(s):  
Xing-lang Fan ◽  
Sheng-jie Gu ◽  
Xi Wu ◽  
Jia-fei Jiang

Owing to their high strength-to-weight ratio, superior corrosion resistance, and convenience in manufacture, fiber-reinforced polymer (FRP) bars can be used as a good alternative to steel bars to solve the durability issue in reinforced concrete (RC) structures, especially for seawater sea-sand concrete. In this paper, a theoretical model for predicting the punching shear strength of FRP-RC slabs is developed. In this model, the punching shear strength is determined by the intersection of capacity and demanding curve of FRP-RC slabs. The capacity curve is employed based on critical shear crack theory, while the demand curve is derived with the help of a simplified tri-linear moment-curvature relationship. After the validity of the proposed model is verified with experimental data collected from the literature, the effects of concrete strength, loading area, FRP reinforcement ratio, and effective depth of concrete slabs are evaluated quantitatively.


2021 ◽  
Vol 11 (6) ◽  
pp. 2736
Author(s):  
Min Sook Kim ◽  
Young Hak Lee

In this study, the structural behavior of reinforced concrete flat plates shear reinforced with vertical grids made of a glass fiber reinforced polymer (GFRP) was experimentally evaluated. To examine the shear strength, experiments were performed on nine concrete slabs with different amounts and spacings of shear reinforcement. The test results indicated that the shear strength increased as the amount of shear reinforcement increased and as the spacing of the shear reinforcement decreased. The GFRP shear reinforcement changed the cracks and failure mode of the specimens from a brittle punching to flexure one. In addition, the experimental results are compared with a shear strength equation provided by different concrete design codes. This comparison demonstrates that all of the equations underestimate the shear strength of reinforced concrete flat plates shear reinforced with GFRP vertical grids. The shear strength of the equation by BS 8110 is able to calculate the punching shear strength reasonably for a concrete flat plate shear reinforced with GFRP vertical grids.


Author(s):  
Georgios Balomenos ◽  
Aikaterini Genikomsou ◽  
Marianna Polak

2002 ◽  
Vol 29 (4) ◽  
pp. 602-611 ◽  
Author(s):  
Ehab F El-Salakawy ◽  
Maria Anna Polak ◽  
Khaled A Soudki

The paper presents work on punching shear rehabilitation and strengthening of existing slab–column connections. Four full-scale specimens representing slab–column edge connections were built and tested to failure. Three slabs were then repaired and strengthened and tested again. In the originally tested slabs, which were chosen for repair, one slab had an opening in front of the column and contained shear reinforcement, one slab had an opening and no shear reinforcement, and one had no opening and no reinforcement. The dimensions of the slabs were 1540 × 1020 × 120 mm with square columns (250 × 250 mm). The openings in the specimens were square (150 × 150 mm) with the sides parallel to the sides of the column. The slabs were made using normal weight concrete (28-day average compressive strength of 32 MPa) and reinforced with a reinforcement ratio of 0.75%. The slabs were repaired by replacing old-damaged concrete with new concrete of the same properties. Strengthening was carried out using shear studs for the two slabs, which originally did not have shear reinforcement. The rehabilitation increased the punching shear strength (by 26–41%) and the ductility of the connections. All repaired specimens failed in flexure.Key words: concrete slabs, punching shear, rehabilitation, edge connections, openings, studs, repair.


2015 ◽  
Vol 12 (9) ◽  
pp. 1616-1640 ◽  
Author(s):  
Husain Abbas ◽  
Aref A. Abadel ◽  
Tarek Almusallam ◽  
Yousef Al-Salloum

2014 ◽  
Vol 627 ◽  
pp. 245-248
Author(s):  
Hyun Ki Choi

The punching shear on the flat plate slab-column connection can bring about the reason of the brittle punching shear failure which may result of collapsing the whole structure. From the development of residential flat plate system, the shear reinforcement is developed for preventing the punching shear. This study proposed 3 reinforcements that are increased to bond capacity using lateral bar, the structure test is performed. As performed test result, because slabs not keep enough bond length, slab is failed before shear reinforcement's yield strength duo to anchorage of slip. According to result, FEM analyzed an effect of slab thickness and concrete compressive. The study suggests shear strength formula that possible a positive shear reinforcement in slab-column connection.


Sign in / Sign up

Export Citation Format

Share Document