scholarly journals Determination of acrylamide in dry feedstuff for dogs and cats

2013 ◽  
Vol 82 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Helena Veselá ◽  
Emanuel Šucman

Acrylamide is considered to be an endogenous contaminant of food and feedstuff. Attention is paid to the acrylamide content in human nutrition products; however, there is lack of data about its concentrations in feedstuff. The aim of this study was to use a newly developed adsorptive stripping voltammetry procedure for determination of acrylamide concentrations in five and three different kinds of dog and cat dry feedstuff, respectively. The applied analytical procedure consists of a solvent extraction in ultrasound bath, followed by voltammetric measurement at the hanging mercury drop electrode in ammonia buffer. The accuracy of the method was verified by use of standard reference materials. The range of acrylamide concentration found in samples of dry dog and cat feedstuff ranged from 106 to 358 μg/kg, and from 66 to 269 μg/kg, respectively. The precision of analyses expressed in form of the relative standard deviations ranged between 0.6–1.7%. The voltammetric procedure appears to be a reliable, sensitive, rapid and low-cost analytical technique for the determination of acrylamide in food and feedstuff. The concentrations of acrylamide found in feedstuff were relatively moderate but it is undoubtedly necessary to monitor its concentrations in future.

1982 ◽  
Vol 65 (4) ◽  
pp. 987-991 ◽  
Author(s):  
R Duane Satzger ◽  
Charles S Clow ◽  
Evelyn Bonnin ◽  
Fred L Fricke

Abstract A method is described for the simultaneous determination of ultratrace levels of lead and cadmium in selected agricultural crop samples by differential pulse anodic stripping voltammetry. Samples are dry ashed at high temperature with H2SO4 as an ashing aid. Techniques are described to control the lead and cadmium blank levels of 2 ng and 0.4 ng, respectively. Typical relative standard deviations for the crop analyses are 13% at 100 ng/g and 25% at 10 ng/g for lead, and 5% at 100 ng/g and 10% at 10 ng/g for cadmium. The lowest quantifiable level, based on 3 g dry sample, is 2 ng/g for lead and 1 ng/g for cadmium. Recovery studies, precision studies, and analyses of NBS Standard Reference Materials demonstrate the accuracy and reproducibility of this technique. A summary of results for over 1700 crop samples is reported.


2003 ◽  
Vol 68 (8) ◽  
pp. 1437-1448 ◽  
Author(s):  
Clinio Locatelli ◽  
Giancarlo Torsi

The present work describes the analytical procedures for the voltammetric determination of Cu, Pb, Cd, Zn, Fe, Mn, Co, Ni, Sn, Sb and Bi in copper alloys. The possibility of determining simultaneously metal concentrations in the case of interference of the voltammetric signals due to the peak overlapping is also highlighted and discussed. The analytical procedure was verified by the analysis of the standard reference materials: commercial bronze A NIST-SRM 1115, gunmetal BCS-CRM 207/2, high tensile brass BCS-CRM 390. Precision and accuracy, expressed as relative standard deviation and relative error, respectively, were in all cases lower than 6%. The limits of detection for each element were also reported.


2016 ◽  
Vol 855 ◽  
pp. 3-8 ◽  
Author(s):  
Charuwan Khamkaew ◽  
Sontaya Manaboot

A simple, rapid, selective and sensitivity approach for the determination of Pb(II) in G. fisheri seaweed is described. The method is based on differential pulse anodic stripping voltammetry (DPASV) at hanging mercury drop electrode (HMDE) vs. Ag/AgCl in 0.2 M ammonium acetate (NH4OAc) pH 7.5. The operating analytical conditions; deposition potential (Edep) of -0.4 V, peak potential of -0.78 V, and mercury dropped size of 3 were performed. To see the sensitivity of Pb(II) measurement, the influences of deposition time and stirring speed were investigated. From the findings, the optimal parameters; deposition time of 90 s, and stirring speed of 2000 rpm were obtained. In these conditions, the limit of detection (3σ) of 0.60 µgL-1 and the linear range extended to 12.50 µgL-1 (r2=0.9999) were obtained. The relative standard deviation (RSD) of triplicate measurements using 1.8 µgL-1 of Pb(II) was 1.22%. The method was then applied to measure Pb(II) in real samples. In this study, the desorption efficiency of edible eluents by batch method was determined. The method is based on Pb(II) desorption using different types of edible eluents; acetic acid (HOAc), citric acid (CTA), sodium chloride (NaCl), sodium bicarbonate (NaHCO3), ethylenediaminetetraacetic acid (EDTA), and chitosan (CTS). Batch desorption of Pb(II) from seaweed soaked in individual eluent was performed by shaking at 100 rpm for 2 h at ambient temperature. Results show that the most effective eluent in desorbing the contaminated Pb(II) from G. fisheri with up to 82% of desorption efficiency for bound Pb(II) was EDTA solution.


2000 ◽  
Vol 83 (6) ◽  
pp. 1321-1326 ◽  
Author(s):  
Clinio Locatelli

Abstract Peak area was used for the simultaneous determination of copper(II), lead(II), cadmium(II), and nickel(II) in environmental matrixes by differential pulse voltammetry. The voltammetric measurements were performed with a conventional 3-electrode cell and an ammonia–ammonium chloride buffer, pH 9.1, as the supporting electrolyte. The analytical procedure was verified first in aqueous reference solutions and later by analysis of the standard reference materials Estuarine Sediment BCR-CRM 277 and River Sediment BCR-CRM 320. The precision and accuracy of the method, expressed as the relative standard deviation and the relative error, respectively, were <5% in all cases; the detection limit for each element under the experimental conditions used was in the range 1–5 μg/L. In the case of mutual interference between neighboring elements, an analytical procedure is proposed that is based on the standard additions technique, which allows the resolution of the overlapping voltammetric peaks.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 94
Author(s):  
Víctor Padilla ◽  
Núria Serrano ◽  
José Manuel Díaz-Cruz

A commercial and disposable screen-printed carbon electrode (SPCE) has been proposed for a fast, simple and low-cost determination of Ni(II) at very low concentration levels by differential pulse adsorptive stripping voltammetry (DPAdSV) in the presence of dimethylglyoxime (DMG) as complexing agent. In contrast with previously proposed methods, the Ni(II)-DMG complex adsorbs directly on the screen-printed carbon surface, with no need of mercury, bismuth or antimony coatings. Well-defined stripping peaks and a linear dependence of the peak area on the concentration of Ni(II) was achieved in the range from 1.7 to 150 µg L−1, with a limit of detection of 0.5 µg L−1 using a deposition time of 120 s. An excellent reproducibility and repeatability with 0.3% (n = 3) and 1.5% (n = 15) relative standard deviation, respectively, were obtained. In addition, the suitability of the SPCE as sensing unit has been successfully assessed in a wastewater certificated reference material with remarkable trueness and very good reproducibility.


2008 ◽  
Vol 73 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Ljubiša M. Ignjatović ◽  
Jiří Barek ◽  
Jiří Zima ◽  
Milica C. Stević

The optimum conditions were found for the determination of 1,1-dimethyl-3-phenyltriazene in the concentration range from 1 × 10-4 to 1 × 10-7 mol l-1 by differential pulse voltammetry at a hanging mercury drop electrode. The sensitivity of the determination can be improved by preliminary adsorptive accumulation of the substance on the surface of the hanging mercury drop. Differential pulse adsorptive stripping voltammetry can be used for the purpose in the concentration range from 1 × 10-6 to 1 × 10-9 mol l-1. The determination limit is 1 × 10-9 mol l-1 for a deposition time of 10 min, the relative standard deviation being 5% (n = 10) for a concentration of 2 × 10-9 mol l-1.


2013 ◽  
Vol 31 (No. 4) ◽  
pp. 401-406 ◽  
Author(s):  
H. Veselá ◽  
E. Šucman

A new electroanalytical method for the determination of acrylamide in food has been developed. It was found that a complex of acrylamide and Ni<sup>2+</sup> is suitable for the electrochemical determination of acrylamide. Ammonia buffer of pH&nbsp;= 9.5 was found to provide convenient conditions for the determination. optimal concentration of Ni<sup>2+</sup> was 500&nbsp;&micro;mol/l. The sample preparation procedure was optimised. The best results were found for an ethanol/water mixture (1:2) and pH = 1.4. The samples were extracted in an ultrasound bath, and after centrifugation 0.2 ml of the extract was taken for the measurement. Voltammetric measurements were done using the hanging mercury drop electrode. The peak height was a function of acrylamide concentration and deposition time. The accuracy of the method was verified by the use of standard reference materials. &nbsp;


2009 ◽  
Vol 74 (4) ◽  
pp. 599-610 ◽  
Author(s):  
Mohammad Bagher Gholivand ◽  
Alireza Pourhossein ◽  
Mohsen Shahlaei

A sensitive and selective procedure is presented for the voltammetric determination of lead. The procedure involves an adsorptive accumulation of lead L-3-(3,4-dihydroxyphenyl)alanine (LDOPA) on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of reduction current of an adsorbed complex at –0.15 V (vs Ag|AgCl). Optimum conditions for lead analysis include pH 8.5, 80 μM LDOPA and accumulation potential –0.15 V (vs Ag|AgCl). The peak currents are proportional to the lead concentration 1–300 nmol l–1 with a detection limit of 0.6 nmol l–1 and accumulation time 60 s. The method was used for the determination of lead in blood, dry tea and also in waters.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Dariusz Guziejewski ◽  
Agnieszka Nosal-Wiercińska ◽  
Sławomira Skrzypek ◽  
Witold Ciesielski ◽  
Sylwia Smarzewska

The aim of the research was the use of square wave adsorptive stripping voltammetry (SWAdSV) in conjunction with a hanging mercury drop electrode (HMDE) for the determination of nitrothal-isopropyl. It was found that optimal SW technique parameters were frequency, 200 Hz; amplitude, 50 mV; and step potential, 5 mV. Accumulation time and potential were studied to select the optimal conditions in adsorptive stripping voltammetry: 45 s at 0.0 V, respectively. The calibration curve (SWSV) was linear in the nitrothal-isopropyl concentration range from 2.0 × 10−7 to 2.0 × 10−6 mol L−1 with detection limit of 3.46 × 10−8 mol L−1. The repeatability of the method was determined at a nitrothal-isopropyl concentration level equal to 6.0 × 10−7 mol L−1 and expressed as RSD = 5.5% (n=6). The proposed method was successfully validated by studying the recovery of nitrothal-isopropyl in spiked environmental samples.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4809 ◽  
Author(s):  
Savvina Christidi ◽  
Alexia Chrysostomou ◽  
Anastasios Economou ◽  
Christos Kokkinos ◽  
Peter R. Fielden ◽  
...  

This work describes a novel electrochemical sensor fabricated by an injection molding process. This device features a conductive polymer electrode encased in a plastic holder and electroplated in situ with a thin antimony film. The antimony film sensor was applied to the determination of Pb(II) and Cd(II) by anodic stripping voltammetry (ASV). The deposition of Sb on the sensor was studied by cyclic voltammetry (CV) and microscopy. The experimental variables (concentration of the antimony plating solution, deposition potential and time, stripping waveform) were investigated, and the potential interferences were studied and addressed. The limits of detection were 0.95 μg L−1 for Pb(II) and 1.3 for Cd(II) (at 240 s of preconcentration) and the within-sensor percentage relative standard deviations were 4.2% and 4.9%, respectively, at the 25 μg L−1 level (n = 8). Finally, the sensor was applied to the determination of Pb(II) and Cd(II) in a phosphorite sample and a lake water sample.


Sign in / Sign up

Export Citation Format

Share Document