scholarly journals Simple Equations for Considering Spatial Variability on the Bearing Capacity of Clay

2019 ◽  
Vol 5 (1) ◽  
pp. 93
Author(s):  
Davood Azan ◽  
Abdolhossein Haddad

In the present paper, the effect of spatial variability of undrained shear strength on the bearing capacity of shallow strip footing on clay was investigated and two new and simple equations were introduced for incorporating the effect of soil variability parameters on the undrained bearing capacity of strip footing on clay. For investigating the spatial variability of clay, undrained shear strength was assumed as a spatial variable parameter with the use of random field theory. The Monte Carlo simulation technique was used to obtain the probability distribution of the bearing capacity of footing on nonhomogeneous clay. The spatial variability of the undrained shear strength was investigated using three controlling parameters: coefficient of variation (COV) of the undrained shear strength as well as the scales of fluctuation of the shear strength in horizontal and vertical directions. The Mohr-Coulomb failure criterion and finite difference method were used to model the plastic behaviour of soil and calculate the bearing capacity of the footing. The results show that by increasing the COV of the undrained shear strength, the average bearing capacity decreases while the COV of the bearing capacity increases. Moreover, the average bearing capacity of footing has an approximate increasing trend with increasing the scales of fluctuation.

2020 ◽  
Vol 20 (5) ◽  
pp. 295-307
Author(s):  
André Arnold ◽  
Manuel Krähenbühl ◽  
Weiyuan Zhang ◽  
Amin Askarinejad

2015 ◽  
Vol 55 (4) ◽  
pp. 866-880 ◽  
Author(s):  
Dian-Qing Li ◽  
Xiao-Hui Qi ◽  
Zi-Jun Cao ◽  
Xiao-Song Tang ◽  
Wei Zhou ◽  
...  

2020 ◽  
Vol 857 ◽  
pp. 399-408
Author(s):  
Maki J. Mohammed Al-Waily ◽  
Mohammed Y. Fattah ◽  
Maysa Salem Al-Qaisi

In the present study, 24 laboratory models on soft clay treated with stone columns were carried out. The results for each case are analysed for the purpose of constructing a statistical model linking the variables studied. The experiments showed that the stress concentration and bearing capacity of soil treated with stone column increase with increasing the undrained shear strength (cu), number of columns and L/d ratio. The models represent a single stone column and a group of stone columns. The studied variables are three dependent variables, the stress concentration ratio (n), bearing capacity of soil treated with stone column (q) and the settlement improvement ratio (Sr) due to the existence of stone columns. The independent variables are six: the undrained shear strength of clay soil, with three values (6, 9 and 12 kPa), the number of stone columns (1, 2, 3 and 4 columns) and the length (L) to the diameter (D) of the stone column or (L/D) ratio in two values (6 and 8). Besides, the bearing capacity of the soil treated (q) with stone columns and the settlement improvement ratio were used in some statistical models as independents. After regression analysis, a set of equations that correlate the previous variables have been suggested. The incepted values for dependent variables are close to the laboratory results.


2006 ◽  
Vol 43 (10) ◽  
pp. 1074-1087 ◽  
Author(s):  
Yu-Jie Wang ◽  
Paul Chiasson

A stochastic slope stability analysis method is proposed to investigate the short-term stability of unsupported excavation works in a soft clay deposit having spatially variable properties. Spatial variability of undrained shear strength is modelled by a stochastic model that is the sum of a trend component and a fluctuation component. The undrained shear strength trend, which is also spatially variable, is modelled by kriging or a random function. Slope stability analyses are performed on the stochastic soft clay model to investigate the contribution of spatial variability of undrained shear strength to a disagreement among high factors of safety computed from deterministic methods for slopes that have failed. Probabilities of failure as computed from the stochastic analyses give a better assessment of failure potential. Probability of failure values also correlate with time delay before failure. This phenomenon may be related to progressive failure or creep and to pore pressure dissipation with time.Key words: slope stability analysis, failure probability, spatial variability, stochastic modelling, geostatistics, vane tests, sensitive clay.


2011 ◽  
Vol 250-253 ◽  
pp. 2388-2391 ◽  
Author(s):  
Xiao Ping Wang ◽  
Jian Qi Wu

The stiffness and shear strength of soft clay attenuate under long-term cyclic loading, resulting in reduced foundation bearing capacity of road. The variation regularity of undrained shear strength of saturated soft clay which is normally consolidated or over consolidated under cyclic loading was studied with two-way vibration triaxial test, and some useful results are obtained.


Sign in / Sign up

Export Citation Format

Share Document