scholarly journals Effects of Near-fault Strong Ground Motions on Probabilistic Structural Seismic-induced Damages

2019 ◽  
Vol 5 (4) ◽  
pp. 796-809
Author(s):  
Farzad Mirzaie Aminian ◽  
Ehsan Khojastehfar ◽  
Hamid Ghanbari

Seismic fragility curves measure induced levels of structural damage against strong ground motions of earthquakes, probabilistically. These curves play an important role in seismic performance assessment, seismic risk analysis and making rational decisions regarding seismic risk management of structures. It has been demonstrated that the calculated fragility curves of structures are changed while the structures are excited by near-field strong ground motions in comparison with far-field ones. The objective of this paper is to evaluate the extents of modification for various performance levels and variety of structural heights. To achieve this goal, Incremental Dynamic Analysis (IDA) method is applied to calculate seismic fragility curves. To investigate the effects of earthquake characteristics, two categories of strong ground motions are assumed through IDA method, i.e. near and far-field sets. To study the extent of modification for various heights of structures, 4 – 6 and 10 stories moment-resisting concrete frames are considered as case studies.  Furthermore, to study the importance of involving near-field strong ground motions in seismic performance assessment of structures, the damage levels are considered as the renowned structural performance levels (i.e. Immediate Occupancy, Life Safety, Collapse Prevention and Sidesway Collapse). Achieved results show that the fragility curve of low-rise frame (i.e. 4-story case study) for IO limit state presents more probability of damage applying near-fault sets in comparison with far-fault set. Investigating fragility curves of the other performance levels (i.e. LS, CP and Collapse) and the higher frames, a straightforward conclusion, regarding probability of damage. To achieve the rational results for the higher frames, mean annual frequency of exceedance (MAFE) and probability of exceeding limit states in 50 years are calculated. MAFE is defined as the integration of structural fragility curve over seismic hazard curve. According to the achieved results for 6-story frame, if the structure is excited by near-field strong ground motions the probability of exceedance for LS, CP and collapse limit states in 50 years will be increased up to 11%, 2.4%, 0.7% and 0.4% respectively, comparing with the calculated probabilities while far-field strong ground motions are applied. On the other hand, while the 10-story case study is excited by near-field strong ground motions, the exceedance probability values for mentioned limit states decreases up to 20%, 5%, 4% and 4%, respectively. Consequently, it can be concluded that the lower is the height of the structure, the more will be the increment of probability of damage in the near-field conditions. Furthermore, this increment is much more for IO limit state in comparison with other limit states. These facts can be applied as a precaution for seismic design of low-rise structures, while they are located at the vicinity of active faults.

Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


2020 ◽  
Author(s):  
Tamarah King ◽  
Mark Quigley ◽  
Dan Clark

<p>Coseismically displaced rock fragments (chips) in the near-field (less than 5 km) of the 2016 moment magnitude (M<sub>W</sub>) 6.1 Petermann earthquake (Australia) preserve directionality of strong ground motions. Displacement data from 1437 chips collected over an area of 100 km<sup>2 </sup>along and across the Petermann surface rupture is interpreted to record combinations of co-seismic directed permanent ground displacements associated with elastic rebound (fling) and transient  ground shaking, with intensities of motion increasing with proximity to the surface rupture. The observations provide a proxy test for available models for directionality of near-field reverse fault strong ground motions in the absence of instrumental data. This study provides a dense proxy record of strong ground motions at less than 5 km distance from a surface rupturing reverse earthquake, and may help test models of near-field dynamic and static pulse-like strong ground motion for dip-slip earthquakes.</p>


2011 ◽  
Vol 27 (4) ◽  
pp. 971-996 ◽  
Author(s):  
Özgür Avşar ◽  
Ahmet Yakut ◽  
Alp Caner

This study focuses on the development of analytical fragility curves for the ordinary highway bridges constructed after the 1990s. Four major bridge classes were employed based on skew angle, number of columns per bent, and span number (only multispan bridges). Nonlinear response-history analyses (NRHA) were conducted for each bridge sample using a detailed 3-D analytical model subjected to earthquake ground motions of varying seismic intensities. A component-based approach that uses several engineering demand parameters was employed to determine the seismic response of critical bridge components. Corresponding damage limit states were defined either in terms of member capacities or excessive bearing displacements. Lognormal fragility curves were obtained by curve fitting the point estimates of the probability of exceeding each specified damage limit state for each major bridge class. Bridges with larger skew angles or single-column bents were found to be the most seismically vulnerable.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
A. Ravi Kiran ◽  
G. R. Reddy ◽  
M. K. Agrawal

Abstract A procedure is described for risk-based seismic performance assessment of pressurized piping systems considering ratcheting. The procedure is demonstrated on a carbon steel piping system considered for OECD-NEA benchmark exercise on quantification of seismic margins. Initially, fragility analysis of the piping system is carried out by considering variability in damping and frequency. Variation in damping is obtained from the statistical analysis of the damping values observed in earlier experiments on piping systems and components. The variation in ground motion is considered by using 20 strong motion records of the intraplate region. Floor motion of a typical reactor building of a nuclear power plant under these actual earthquake records is evaluated and applied to the piping system. The performance evaluation of the piping system in terms of ratcheting is carried out using a numerical approach, which was earlier validated with shake table ratcheting tests on piping components and systems. Three limit states representing performance levels of the piping system under seismic load are considered for fragility evaluation. For each limit state, probability of exceedance at different levels of floor motion is evaluated to generate a fragility curve. Subsequently, the fragility curves of the piping systems are convoluted with hazardous curves for a typical site to obtain the risk in terms of annual probability of occurrence of the performance limits.


Sign in / Sign up

Export Citation Format

Share Document